메뉴 건너뛰기




Volumn 22, Issue 8, 2012, Pages 438-446

Two-dimensional spatial patterning in developmental systems

Author keywords

Activator inhibitor model; Cell cell interaction; Fish skin stripes; Lateral inhibition; Leaf epidermis; Reaction diffusion model

Indexed keywords

BASIC HELIX LOOP HELIX TRANSCRIPTION FACTOR; LIGAND; NOTCH RECEPTOR;

EID: 84864315765     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.06.002     Document Type: Review
Times cited : (40)

References (69)
  • 2
    • 0015454185 scopus 로고
    • A theory of biological patten formation
    • Gierer A., Meinhardt H. A theory of biological patten formation. Kybernetik 1972, 12:30-39.
    • (1972) Kybernetik , vol.12 , pp. 30-39
    • Gierer, A.1    Meinhardt, H.2
  • 3
    • 77957347061 scopus 로고    scopus 로고
    • Reaction-diffusion model as a framework for understanding biological pattern formation
    • Kondo S., Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010, 329:1616-1620.
    • (2010) Science , vol.329 , pp. 1616-1620
    • Kondo, S.1    Miura, T.2
  • 4
    • 0033868140 scopus 로고    scopus 로고
    • Pattern formation by local self-activation and lateral inhibition
    • Meinhardt H., Gierer A. Pattern formation by local self-activation and lateral inhibition. Bioessays 2000, 22:753-760.
    • (2000) Bioessays , vol.22 , pp. 753-760
    • Meinhardt, H.1    Gierer, A.2
  • 5
    • 0029163545 scopus 로고
    • A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus
    • Kondo S., Asai R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 1995, 376:765-768.
    • (1995) Nature , vol.376 , pp. 765-768
    • Kondo, S.1    Asai, R.2
  • 6
    • 84862663866 scopus 로고    scopus 로고
    • Blending of animal colour patterns by hybridization
    • Miyazawa S., et al. Blending of animal colour patterns by hybridization. Nat. Commun. 2010, 1:66.
    • (2010) Nat. Commun. , vol.1 , pp. 66
    • Miyazawa, S.1
  • 7
    • 1542649953 scopus 로고    scopus 로고
    • Pigment patterns: fish in stripes and spots
    • Parichy D.M. Pigment patterns: fish in stripes and spots. Curr. Biol. 2003, 13:R947-R950.
    • (2003) Curr. Biol. , vol.13
    • Parichy, D.M.1
  • 8
    • 0037106663 scopus 로고    scopus 로고
    • Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form
    • Quigley I.K., Parichy D.M. Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc. Res. Tech. 2002, 58:442-455.
    • (2002) Microsc. Res. Tech. , vol.58 , pp. 442-455
    • Quigley, I.K.1    Parichy, D.M.2
  • 9
    • 34247561708 scopus 로고    scopus 로고
    • Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism
    • Yamaguchi M., et al. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4790-4793.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 4790-4793
    • Yamaguchi, M.1
  • 10
    • 66649132753 scopus 로고    scopus 로고
    • Interactions between zebrafish pigment cells responsible for the generation of Turing patterns
    • Nakamasu A., et al. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8429-8434.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8429-8434
    • Nakamasu, A.1
  • 11
    • 0032841827 scopus 로고    scopus 로고
    • Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development
    • Parichy D.M., et al. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 1999, 126:3425-3436.
    • (1999) Development , vol.126 , pp. 3425-3436
    • Parichy, D.M.1
  • 12
    • 0037350555 scopus 로고    scopus 로고
    • Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development
    • Parichy D.M., Turner J.M. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development. Development 2003, 130:817-833.
    • (2003) Development , vol.130 , pp. 817-833
    • Parichy, D.M.1    Turner, J.M.2
  • 13
    • 33751353233 scopus 로고    scopus 로고
    • Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement
    • Iwashita M., et al. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet. 2006, 2:e197.
    • (2006) PLoS Genet. , vol.2
    • Iwashita, M.1
  • 14
    • 84857011147 scopus 로고    scopus 로고
    • Pigment pattern formation by contact-dependent depolarization
    • Inaba M., et al. Pigment pattern formation by contact-dependent depolarization. Science 2012, 335:677.
    • (2012) Science , vol.335 , pp. 677
    • Inaba, M.1
  • 15
    • 0033617522 scopus 로고    scopus 로고
    • Notch signaling: cell fate control and signal integration in development
    • Artavanis-Tsakonas S., et al. Notch signaling: cell fate control and signal integration in development. Science 1999, 284:770-776.
    • (1999) Science , vol.284 , pp. 770-776
    • Artavanis-Tsakonas, S.1
  • 16
    • 0033595679 scopus 로고    scopus 로고
    • Contact-dependent inhibition of cortical neurite growth mediated by notch signaling
    • Sestan N., et al. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 1999, 286:741-746.
    • (1999) Science , vol.286 , pp. 741-746
    • Sestan, N.1
  • 17
    • 0025971830 scopus 로고
    • The choice of cell fate in the epidermis of Drosophila
    • Heitzler P., Simpson P. The choice of cell fate in the epidermis of Drosophila. Cell 1991, 64:1083-1092.
    • (1991) Cell , vol.64 , pp. 1083-1092
    • Heitzler, P.1    Simpson, P.2
  • 18
    • 0030597511 scopus 로고    scopus 로고
    • Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling
    • Collier J.R., et al. Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 1996, 183:429-446.
    • (1996) J. Theor. Biol. , vol.183 , pp. 429-446
    • Collier, J.R.1
  • 19
    • 0037076210 scopus 로고    scopus 로고
    • Robustness, flexibility, and the role of lateral inhibition in the neurogenic network
    • Meir E., et al. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 2002, 12:778-786.
    • (2002) Curr. Biol. , vol.12 , pp. 778-786
    • Meir, E.1
  • 20
    • 41549140462 scopus 로고    scopus 로고
    • Oscillations in notch signaling regulate maintenance of neural progenitors
    • Shimojo H., et al. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008, 58:52-64.
    • (2008) Neuron , vol.58 , pp. 52-64
    • Shimojo, H.1
  • 21
    • 77952092577 scopus 로고    scopus 로고
    • Cis-interactions between Notch and Delta generate mutually exclusive signalling states
    • Sprinzak D., et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 2010, 465:86-90.
    • (2010) Nature , vol.465 , pp. 86-90
    • Sprinzak, D.1
  • 22
    • 0030776397 scopus 로고    scopus 로고
    • Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing
    • de Celis J.F., Bray S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 1997, 124:3241-3251.
    • (1997) Development , vol.124 , pp. 3241-3251
    • de Celis, J.F.1    Bray, S.2
  • 23
    • 0030918403 scopus 로고    scopus 로고
    • The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate
    • Micchelli C.A., et al. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 1997, 124:1485-1495.
    • (1997) Development , vol.124 , pp. 1485-1495
    • Micchelli, C.A.1
  • 24
    • 0037081076 scopus 로고    scopus 로고
    • Intracellular cell-autonomous association of Notch and its ligands: a novel mechanism of Notch signal modification
    • Sakamoto K., et al. Intracellular cell-autonomous association of Notch and its ligands: a novel mechanism of Notch signal modification. Dev. Biol. 2002, 241:313-326.
    • (2002) Dev. Biol. , vol.241 , pp. 313-326
    • Sakamoto, K.1
  • 25
    • 68849110194 scopus 로고    scopus 로고
    • Cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition
    • Miller A.C., et al. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 2009, 19:1378-1383.
    • (2009) Curr. Biol. , vol.19 , pp. 1378-1383
    • Miller, A.C.1
  • 26
    • 54949151933 scopus 로고    scopus 로고
    • Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition
    • Kageyama R., et al. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 2008, 11:1247-1251.
    • (2008) Nat. Neurosci. , vol.11 , pp. 1247-1251
    • Kageyama, R.1
  • 29
    • 2942618799 scopus 로고    scopus 로고
    • Plant trichomes: a model for cell differentiation
    • Hulskamp M. Plant trichomes: a model for cell differentiation. Nat. Rev. Mol. Cell Biol. 2004, 5:471-480.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 471-480
    • Hulskamp, M.1
  • 30
    • 33744993149 scopus 로고    scopus 로고
    • Trichomes: different regulatory networks lead to convergent structures
    • Serna L., Martin C. Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci. 2006, 11:274-280.
    • (2006) Trends Plant Sci. , vol.11 , pp. 274-280
    • Serna, L.1    Martin, C.2
  • 31
    • 77950342989 scopus 로고    scopus 로고
    • Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development
    • Peterson K.M., et al. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell 2010, 22:296-306.
    • (2010) Plant Cell , vol.22 , pp. 296-306
    • Peterson, K.M.1
  • 32
    • 33751002969 scopus 로고    scopus 로고
    • Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development
    • Ohashi-Ito K., Bergmann D.C. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 2006, 18:2493-2505.
    • (2006) Plant Cell , vol.18 , pp. 2493-2505
    • Ohashi-Ito, K.1    Bergmann, D.C.2
  • 33
    • 33846666465 scopus 로고    scopus 로고
    • Transcription factor control of asymmetric cell divisions that establish the stomatal lineage
    • MacAlister C.A., et al. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 2007, 445:537-540.
    • (2007) Nature , vol.445 , pp. 537-540
    • MacAlister, C.A.1
  • 34
    • 33846666466 scopus 로고    scopus 로고
    • Termination of asymmetric cell division and differentiation of stomata
    • Pillitteri L.J., et al. Termination of asymmetric cell division and differentiation of stomata. Nature 2007, 445:501-505.
    • (2007) Nature , vol.445 , pp. 501-505
    • Pillitteri, L.J.1
  • 35
    • 56449113137 scopus 로고    scopus 로고
    • SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation
    • Kanaoka M.M., et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 2008, 20:1775-1785.
    • (2008) Plant Cell , vol.20 , pp. 1775-1785
    • Kanaoka, M.M.1
  • 36
    • 29344440410 scopus 로고    scopus 로고
    • The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage
    • Lai L.B., et al. The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell 2005, 17:2754-2767.
    • (2005) Plant Cell , vol.17 , pp. 2754-2767
    • Lai, L.B.1
  • 37
    • 34548798705 scopus 로고    scopus 로고
    • Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development
    • Pillitteri L.J., Torii K.U. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays 2007, 29:861-870.
    • (2007) Bioessays , vol.29 , pp. 861-870
    • Pillitteri, L.J.1    Torii, K.U.2
  • 38
    • 34447522197 scopus 로고    scopus 로고
    • The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule
    • Hara K., et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 2007, 21:1720-1725.
    • (2007) Genes Dev. , vol.21 , pp. 1720-1725
    • Hara, K.1
  • 39
    • 0037204933 scopus 로고    scopus 로고
    • Control of stomatal distribution on the Arabidopsis leaf surface
    • Nadeau J.A., Sack F.D. Control of stomatal distribution on the Arabidopsis leaf surface. Science 2002, 296:1697-1700.
    • (2002) Science , vol.296 , pp. 1697-1700
    • Nadeau, J.A.1    Sack, F.D.2
  • 40
    • 66949124482 scopus 로고    scopus 로고
    • The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development
    • Hunt L., Gray J.E. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr. Biol. 2009, 19:864-869.
    • (2009) Curr. Biol. , vol.19 , pp. 864-869
    • Hunt, L.1    Gray, J.E.2
  • 41
    • 67649348212 scopus 로고    scopus 로고
    • Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves
    • Hara K., et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 2009, 50:1019-1031.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1019-1031
    • Hara, K.1
  • 42
    • 22144485952 scopus 로고    scopus 로고
    • Stomatal patterning and differentiation by synergistic interactions of receptor kinases
    • Shpak E.D., et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 2005, 309:290-293.
    • (2005) Science , vol.309 , pp. 290-293
    • Shpak, E.D.1
  • 43
    • 34248650674 scopus 로고    scopus 로고
    • Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis
    • Wang H., et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 2007, 19:63-73.
    • (2007) Plant Cell , vol.19 , pp. 63-73
    • Wang, H.1
  • 44
    • 2642567650 scopus 로고    scopus 로고
    • Stomatal development and pattern controlled by a MAPKK kinase
    • Bergmann D.C., et al. Stomatal development and pattern controlled by a MAPKK kinase. Science 2004, 304:1494-1497.
    • (2004) Science , vol.304 , pp. 1494-1497
    • Bergmann, D.C.1
  • 45
    • 84863012329 scopus 로고    scopus 로고
    • Direct interaction of ligand-receptor pairs specifying stomatal patterning
    • Lee J.S., et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev. 2012, 26:126-136.
    • (2012) Genes Dev. , vol.26 , pp. 126-136
    • Lee, J.S.1
  • 46
    • 74449084030 scopus 로고    scopus 로고
    • Stomagen positively regulates stomatal density in Arabidopsis
    • Sugano S.S., et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature 2010, 463:241-244.
    • (2010) Nature , vol.463 , pp. 241-244
    • Sugano, S.S.1
  • 47
    • 74549178496 scopus 로고    scopus 로고
    • Stomatal density is controlled by a mesophyll-derived signaling molecule
    • Kondo T., et al. Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol. 2010, 51:1-8.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1-8
    • Kondo, T.1
  • 48
    • 0032146157 scopus 로고    scopus 로고
    • Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips
    • Geisler M., et al. Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. Planta 1998, 205:522-530.
    • (1998) Planta , vol.205 , pp. 522-530
    • Geisler, M.1
  • 49
    • 84859957581 scopus 로고    scopus 로고
    • Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem
    • Uchida N., et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6337-6342.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6337-6342
    • Uchida, N.1
  • 50
    • 74349100501 scopus 로고    scopus 로고
    • Regional specification of stomatal production by the putative ligand CHALLAH
    • Abrash E.B., Bergmann D.C. Regional specification of stomatal production by the putative ligand CHALLAH. Development 2010, 137:447-455.
    • (2010) Development , vol.137 , pp. 447-455
    • Abrash, E.B.1    Bergmann, D.C.2
  • 51
    • 80053177619 scopus 로고    scopus 로고
    • Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions
    • Abrash E.B., et al. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions. Plant Cell 2011, 23:2864-2879.
    • (2011) Plant Cell , vol.23 , pp. 2864-2879
    • Abrash, E.B.1
  • 52
    • 70349556372 scopus 로고    scopus 로고
    • One, two, three...models for trichome patterning in Arabidopsis?
    • Pesch M., Hulskamp M. One, two, three...models for trichome patterning in Arabidopsis?. Curr. Opin. Plant Biol. 2009, 12:587-592.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 587-592
    • Pesch, M.1    Hulskamp, M.2
  • 53
    • 0142181015 scopus 로고    scopus 로고
    • A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis
    • Zhang F., et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 2003, 130:4859-4869.
    • (2003) Development , vol.130 , pp. 4859-4869
    • Zhang, F.1
  • 54
    • 0025997497 scopus 로고
    • A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules
    • Oppenheimer D.G., et al. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 1991, 67:483-493.
    • (1991) Cell , vol.67 , pp. 483-493
    • Oppenheimer, D.G.1
  • 55
    • 0033165574 scopus 로고    scopus 로고
    • The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein
    • Walker A.R., et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 1999, 11:1337-1350.
    • (1999) Plant Cell , vol.11 , pp. 1337-1350
    • Walker, A.R.1
  • 56
    • 0033756404 scopus 로고    scopus 로고
    • GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1
    • Payne C.T., et al. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 2000, 156:1349-1362.
    • (2000) Genetics , vol.156 , pp. 1349-1362
    • Payne, C.T.1
  • 57
    • 0028305207 scopus 로고
    • The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis
    • Rerie W.G., et al. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev. 1994, 8:1388-1399.
    • (1994) Genes Dev. , vol.8 , pp. 1388-1399
    • Rerie, W.G.1
  • 58
    • 46749110463 scopus 로고    scopus 로고
    • The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci
    • Zhao M., et al. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 2008, 135:1991-1999.
    • (2008) Development , vol.135 , pp. 1991-1999
    • Zhao, M.1
  • 59
    • 0036790620 scopus 로고    scopus 로고
    • TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis
    • Schellmann S., et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 2002, 21:5036-5046.
    • (2002) EMBO J. , vol.21 , pp. 5036-5046
    • Schellmann, S.1
  • 60
    • 4444240140 scopus 로고    scopus 로고
    • Plasmodesmata as a supracellular control network in plants
    • Lucas W.J., Lee J.Y. Plasmodesmata as a supracellular control network in plants. Nat. Rev. Mol. Cell Biol. 2004, 5:712-726.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 712-726
    • Lucas, W.J.1    Lee, J.Y.2
  • 61
    • 67649217321 scopus 로고    scopus 로고
    • Functional diversity of R3 single-repeat genes in trichome development
    • Wester K., et al. Functional diversity of R3 single-repeat genes in trichome development. Development 2009, 136:1487-1496.
    • (2009) Development , vol.136 , pp. 1487-1496
    • Wester, K.1
  • 62
    • 51049108163 scopus 로고    scopus 로고
    • A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves
    • Digiuni S., et al. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol. Syst. Biol. 2008, 4:217.
    • (2008) Mol. Syst. Biol. , vol.4 , pp. 217
    • Digiuni, S.1
  • 63
    • 61449136893 scopus 로고    scopus 로고
    • A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors
    • Morohashi K., Grotewold E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet. 2009, 5:e1000396.
    • (2009) PLoS Genet. , vol.5
    • Morohashi, K.1    Grotewold, E.2
  • 64
    • 36248986795 scopus 로고    scopus 로고
    • Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events
    • Morohashi K., et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 2007, 145:736-746.
    • (2007) Plant Physiol. , vol.145 , pp. 736-746
    • Morohashi, K.1
  • 65
    • 0032895466 scopus 로고    scopus 로고
    • Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana
    • Larkin J.C., et al. Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana. Genetics 1999, 151:1591-1604.
    • (1999) Genetics , vol.151 , pp. 1591-1604
    • Larkin, J.C.1
  • 66
    • 45849121780 scopus 로고    scopus 로고
    • Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation
    • Bouyer D., et al. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol. 2008, 6:e141.
    • (2008) PLoS Biol. , vol.6
    • Bouyer, D.1
  • 67
    • 0037297846 scopus 로고    scopus 로고
    • Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot
    • Schiefelbein J. Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr. Opin. Plant Biol. 2003, 6:74-78.
    • (2003) Curr. Opin. Plant Biol. , vol.6 , pp. 74-78
    • Schiefelbein, J.1
  • 68
    • 13844321674 scopus 로고    scopus 로고
    • Positional signaling mediated by a receptor-like kinase in Arabidopsis
    • Kwak S.H., et al. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 2005, 307:1111-1113.
    • (2005) Science , vol.307 , pp. 1111-1113
    • Kwak, S.H.1
  • 69
    • 56449126420 scopus 로고    scopus 로고
    • Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS
    • Lampard G.R., et al. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 2008, 322:1113-1116.
    • (2008) Science , vol.322 , pp. 1113-1116
    • Lampard, G.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.