메뉴 건너뛰기




Volumn 44, Issue 6, 2012, Pages 739-763

Estimation of Hydraulic Conductivity and Its Uncertainty from Grain-Size Data Using GLUE and Artificial Neural Networks

Author keywords

Artificial neural networks; Cross validation; Data driven modelling; Early stopping; Generalised likelihood uncertainty estimation; GLUE ANN; Likelihood measures; Principal component analysis; Sedimentary aquifer

Indexed keywords

CROSS VALIDATION; EARLY STOPPING; GLUE-ANN; LIKELIHOOD MEASURES; SEDIMENTARY AQUIFERS; UNCERTAINTY ESTIMATION;

EID: 84864283555     PISSN: 18748961     EISSN: 18748953     Source Type: Journal    
DOI: 10.1007/s11004-012-9409-2     Document Type: Article
Times cited : (42)

References (53)
  • 1
    • 34547870556 scopus 로고    scopus 로고
    • Artificial neural network estimation of saturated hydraulic conductivity
    • Agyare WA, Park SJ, Vlek PL (2007) Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone J 6(2): 423-431.
    • (2007) Vadose Zone J , vol.6 , Issue.2 , pp. 423-431
    • Agyare, W.A.1    Park, S.J.2    Vlek, P.L.3
  • 2
    • 70350759681 scopus 로고    scopus 로고
    • Ensemble streamflow forecast: A GLUE-based neural network approach
    • Asefa T (2009) Ensemble streamflow forecast: A GLUE-based neural network approach. J Am Water Resour Assoc 45(5): 1155-1163.
    • (2009) J Am Water Resour Assoc , vol.45 , Issue.5 , pp. 1155-1163
    • Asefa, T.1
  • 3
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals computing design and application
    • Basheer IA, Hajmeer M (2000) Artificial neural networks: Fundamentals computing design and application. J Microbiol Methods 43(1): 3-31.
    • (2000) J Microbiol Methods , vol.43 , Issue.1 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 6
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality data assimilation and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    • Beven K, Freer J (2001) Equifinality data assimilation and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1-4): 11-29.
    • (2001) J Hydrol , vol.249 , Issue.1-4 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 7
    • 0000274612 scopus 로고
    • The determination of the specific surface of powders
    • Carman PC (1938) The determination of the specific surface of powders. J Soc Chem Ind Trans 57: 225-234.
    • (1938) J Soc Chem Ind Trans , vol.57 , pp. 225-234
    • Carman, P.C.1
  • 12
    • 2342526636 scopus 로고    scopus 로고
    • Literature review: Equations for predicting hydraulic conductivity based on grain-size data. Supplement to technical note entitled: Hydraulic conductivity prediction for sandy soils
    • Cronican A, Gribb M (2004) Literature review: Equations for predicting hydraulic conductivity based on grain-size data. Supplement to technical note entitled: Hydraulic conductivity prediction for sandy soils. Ground Water 42(3): 459-464.
    • (2004) Ground Water , vol.42 , Issue.3 , pp. 459-464
    • Cronican, A.1    Gribb, M.2
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5): 359-366.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2): 251-257.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 22
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7(2): 585-592.
    • (2007) Appl Soft Comput , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 24
    • 79960418874 scopus 로고    scopus 로고
    • Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis
    • Khalil B, Ouarda TBMJ, St-Hilaire A (2011) Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J Hydrol 405(3-4): 277-287.
    • (2011) J Hydrol , vol.405 , Issue.3-4 , pp. 277-287
    • Khalil, B.1    Ouarda, T.B.M.J.2    St-Hilaire, A.3
  • 25
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • October
    • Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng (October): 532-539.
    • (2007) J Hydrol Eng , pp. 532-539
    • Kişi, Ö.1
  • 27
    • 85104356624 scopus 로고
    • Laboratory measurements of hydraulic conductivity of saturated soil
    • Agronomy, C. A. Black (Ed.)
    • Klute A (1965) Laboratory measurements of hydraulic conductivity of saturated soil. In: Black CA et al (eds) Methods of soil analysis. Part 1, Agronomy, vol 9, pp 210-220.
    • (1965) Methods of Soil Analysis. Part 1 , vol.9 , pp. 210-220
    • Klute, A.1
  • 28
    • 0000471806 scopus 로고
    • Ueber kapillare Leitung des Wassers im Boden
    • Kozeny J (1927) Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Wien 136(2a): 271.
    • (1927) Sitzungsber Akad Wiss Wien , vol.136 , Issue.2 a , pp. 271
    • Kozeny, J.1
  • 29
    • 1942536039 scopus 로고    scopus 로고
    • Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data
    • Linderman M, Liu J, Qi J, An L, Ouyang Z, Yang J, Tan Y (2004) Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. Int J Remote Sens 25(9): 1685-1700.
    • (2004) Int J Remote Sens , vol.25 , Issue.9 , pp. 1685-1700
    • Linderman, M.1    Liu, J.2    Qi, J.3    An, L.4    Ouyang, Z.5    Yang, J.6    Tan, Y.7
  • 30
    • 1542351227 scopus 로고    scopus 로고
    • Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data
    • Minasny B, Hopmans JW, Harter T, Eching SO, Tuli A, Denton MA (2004) Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci Soc Am J 68(2): 417-429.
    • (2004) Soil Sci Soc Am J , vol.68 , Issue.2 , pp. 417-429
    • Minasny, B.1    Hopmans, J.W.2    Harter, T.3    Eching, S.O.4    Tuli, A.5    Denton, M.A.6
  • 31
    • 0032558883 scopus 로고    scopus 로고
    • Application of artificial neural network and genetic algorithm in flow and transport simulations
    • Morshed J, Kaluarachchi JJ (1998) Application of artificial neural network and genetic algorithm in flow and transport simulations. Adv Water Resour 22(2): 145-158.
    • (1998) Adv Water Resour , vol.22 , Issue.2 , pp. 145-158
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 32
    • 79960092029 scopus 로고    scopus 로고
    • Estimating the saturated hydraulic conductivity of granular material using artificial neural network based on grain size distribution curve
    • Nakhaei M (2005) Estimating the saturated hydraulic conductivity of granular material using artificial neural network based on grain size distribution curve. J Sci Islam Repub Iran 16(1): 55-62.
    • (2005) J Sci Islam Repub Iran , vol.16 , Issue.1 , pp. 55-62
    • Nakhaei, M.1
  • 33
    • 79952009534 scopus 로고    scopus 로고
    • The current status of pedotransfer functions: Their accuracy reliability and utility in field- and regional-scale modeling
    • D. L. Corwin, K. Loague, and T. R. Ellsworth (Eds.), Washington: American Geophysical Union
    • Pachepsky YA, Rawls WJ, Timlin DJ (1999) The current status of pedotransfer functions: Their accuracy reliability and utility in field- and regional-scale modeling. In: Corwin DL, Loague K, Ellsworth TR (eds) Assessment of non-point source pollution in the vadose zone: Geophysical monograph, vol 108. American Geophysical Union, Washington, pp 223-234.
    • (1999) Assessment of Non-Point Source Pollution in the Vadose Zone: Geophysical Monograph , vol.108 , pp. 223-234
    • Pachepsky, Y.A.1    Rawls, W.J.2    Timlin, D.J.3
  • 34
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt L (1998) Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw 11(4): 761-767.
    • (1998) Neural Netw , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 35
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www. R-project. org/.
    • (2010) R: A language and environment for statistical computing
  • 36
    • 84976832431 scopus 로고
    • Methods to speed up error back-propagation learning algorithm
    • Sarkar D (1995) Methods to speed up error back-propagation learning algorithm. ACM Comput Surv 27(4): 519-542.
    • (1995) ACM Comput Surv , vol.27 , Issue.4 , pp. 519-542
    • Sarkar, D.1
  • 37
    • 0347458328 scopus 로고    scopus 로고
    • Periodic posting to the Usenet newsgroup comp. ai. neural-nets, (ed) visited on 11/11/2010
    • Sarle WS (ed) (1997) Neural Network FAQ. Periodic posting to the Usenet newsgroup comp. ai. neural-nets. ftp://ftp. sas. com/pub/neural/FAQ. html, visited on 11/11/2010.
    • (1997) Neural Network FAQ
    • Sarle, W.S.1
  • 38
    • 0032474481 scopus 로고    scopus 로고
    • Using neural networks to predict soil water retention and soil hydraulic conductivity
    • Schaap M, Leij FJ (1998) Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res 47(1-2): 37-42.
    • (1998) Soil Tillage Res , vol.47 , Issue.1-2 , pp. 37-42
    • Schaap, M.1    Leij, F.J.2
  • 39
    • 0032122509 scopus 로고    scopus 로고
    • Neural network analysis for hierarchical prediction of soil hydraulic properties
    • Schaap MG, Leij FJ, van Genuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62: 847-855.
    • (1998) Soil Sci Soc Am J , vol.62 , pp. 847-855
    • Schaap, M.G.1    Leij, F.J.2    van Genuchten, M.T.3
  • 40
    • 0035479964 scopus 로고    scopus 로고
    • Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
    • Schaap M, Leij F, van Genuchten MTh (2001) Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3-4): 163-176.
    • (2001) J Hydrol , vol.251 , Issue.3-4 , pp. 163-176
    • Schaap, M.1    Leij, F.2    van Genuchten, M.3
  • 41
    • 0018734781 scopus 로고
    • On optimal and data-based histograms
    • Scott D (1979) On optimal and data-based histograms. Biometrika 66: 605-610.
    • (1979) Biometrika , vol.66 , pp. 605-610
    • Scott, D.1
  • 43
    • 69949188688 scopus 로고    scopus 로고
    • Appraisal of the generalized likelihood uncertainty estimation (GLUE) method
    • Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44: W00B06.
    • (2008) Water Resour Res , vol.44
    • Stedinger, J.R.1    Vogel, R.M.2    Lee, S.U.3    Batchelder, R.4
  • 45
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382(1-4): 20-33.
    • (2010) J Hydrol , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 46
    • 0025593679 scopus 로고
    • SuperSAB fast adaptive back propagation with good scaling properties
    • Tollenaere T (1990) SuperSAB fast adaptive back propagation with good scaling properties. Neural Netw 3(5): 561-573.
    • (1990) Neural Netw , vol.3 , Issue.5 , pp. 561-573
    • Tollenaere, T.1
  • 47
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Valverde Ramírez MC, Campos Velho HF, de Ferreira NJ (2005) Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J Hydrol 301: 146-162.
    • (2005) J Hydrol , vol.301 , pp. 146-162
    • Valverde Ramírez, M.C.1    Campos Velho, H.F.2    de Ferreira, N.J.3
  • 49
    • 79952490627 scopus 로고    scopus 로고
    • Field evaluation of methods for determining hydraulic conductivity from grain-size data
    • Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain-size data. J Hydrol 400(1-2): 58-71.
    • (2011) J Hydrol , vol.400 , Issue.1-2 , pp. 58-71
    • Vienken, T.1    Dietrich, P.2
  • 50
    • 69249131691 scopus 로고    scopus 로고
    • Field evidence of a negative correlation between saturated hydraulic conductivity and soil carbon in a sandy soil
    • doi:10.1029/2008WR006865
    • Wang T, Wedin D, Zlotnik VA (2009) Field evidence of a negative correlation between saturated hydraulic conductivity and soil carbon in a sandy soil. Water Resour Res 45(7): W07503. doi: 10. 1029/2008WR006865.
    • (2009) Water Resour Res , vol.45 , Issue.7
    • Wang, T.1    Wedin, D.2    Zlotnik, V.A.3
  • 51
    • 55949130292 scopus 로고    scopus 로고
    • Hydraulic conductivity variability of the Boom clay in north-east Belgium based on four core drilled boreholes
    • Wemaere I, Marivoet J, Labat S (2008) Hydraulic conductivity variability of the Boom clay in north-east Belgium based on four core drilled boreholes. Phys Chem Earth 33(S1): 24-36.
    • (2008) Phys Chem Earth , vol.33 , Issue.S1 , pp. 24-36
    • Wemaere, I.1    Marivoet, J.2    Labat, S.3
  • 53
    • 34848823126 scopus 로고    scopus 로고
    • An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling
    • doi:10.1029/2006WR005158
    • Zou R, Lung WS, Wu J (2007) An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling. Water Resour Res 43: W08427. doi: 10. 1029/2006WR005158.
    • (2007) Water Resour Res , vol.43
    • Zou, R.1    Lung, W.S.2    Wu, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.