메뉴 건너뛰기




Volumn 34, Issue 3, 2008, Pages 2140-2147

A novel approach for digital radio signal classification: Wavelet packet energy-multiclass support vector machine (WPE-MSVM)

Author keywords

Classifier; Digital modulation classification; Digital radio signals; DWPT; Feature extraction; Intelligent systems; Multiclass support vector machine classifier; Wavelet packet energy

Indexed keywords

DIGITAL RADIO; DIGITAL SIGNAL PROCESSING; FEATURE EXTRACTION; INTELLIGENT SYSTEMS; WAVELET ANALYSIS;

EID: 37349051158     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.02.019     Document Type: Article
Times cited : (30)

References (46)
  • 1
    • 0031139676 scopus 로고    scopus 로고
    • Wavelet applications in medicine
    • Akay M. Wavelet applications in medicine. IEEE Spectrum 34 (1997) 50-56
    • (1997) IEEE Spectrum , vol.34 , pp. 50-56
    • Akay, M.1
  • 2
    • 0029277142 scopus 로고
    • Identification algorithm for upper sideband and lower sideband SSB signals
    • Al-jalili Y.O. Identification algorithm for upper sideband and lower sideband SSB signals. Signal Processing 42 2 (1995) 207-213
    • (1995) Signal Processing , vol.42 , Issue.2 , pp. 207-213
    • Al-jalili, Y.O.1
  • 3
    • 16244372741 scopus 로고    scopus 로고
    • Intelligent target recognition based on wavelet packet neural network
    • Avci E., Turkoglu I., and Poyraz M. Intelligent target recognition based on wavelet packet neural network. Experts Systems with Applications 29 1 (2005)
    • (2005) Experts Systems with Applications , vol.29 , Issue.1
    • Avci, E.1    Turkoglu, I.2    Poyraz, M.3
  • 4
    • 25144489652 scopus 로고    scopus 로고
    • Intelligent target recognition based on wavelet adaptive network based fuzzy inference system
    • Springer-Verlag May, pp. 594-601
    • Avci E., Turkoglu I., and Poyraz M. Intelligent target recognition based on wavelet adaptive network based fuzzy inference system. Lecture Notes in Computer Science Vol. 3522/2005 (2005), Springer-Verlag May, pp. 594-601
    • (2005) Lecture Notes in Computer Science , vol.3522-2005
    • Avci, E.1    Turkoglu, I.2    Poyraz, M.3
  • 5
    • 0029407281 scopus 로고
    • Automatic identification of digital modulations
    • Azzouz E.E., and Nandi A.K. Automatic identification of digital modulations. Signal Processing 47 1 (1995) 55-69
    • (1995) Signal Processing , vol.47 , Issue.1 , pp. 55-69
    • Azzouz, E.E.1    Nandi, A.K.2
  • 9
    • 37349005620 scopus 로고    scopus 로고
    • Belousov, A. I., Verzakov, S. A., & von Frese, J. (2001). Support vector machines: a versatile and powerful approach to data analysis. Poster at the Gordon Conference on Statistics and Chemical Engineering. Williamstown, MA. Accessed 30.06.04.
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 12
    • 37349129967 scopus 로고    scopus 로고
    • Campbell, W. M., Singer, E., Torres-Carrasquillo, P. A., & Reynolds, D. A. (2004). Language recognition with support vector machines. Odyssey 2004, May 31st-June 4th, Toledo, Spain.
  • 13
    • 37349000018 scopus 로고    scopus 로고
    • Chih-Wei, H., Chih-Chung, C., & Chih-Jen, L. (2004). A Practical Guide for Support Vector Classification. Accessed 30.06.04.
  • 15
    • 33750051338 scopus 로고    scopus 로고
    • A decision support system based on support vector machines for diagnosis of the heart valve diseases
    • Çomak E., Arslan A., and Turkoglu I. A decision support system based on support vector machines for diagnosis of the heart valve diseases. Computers in Biology and Medicine 37 1 (2007) 21-27
    • (2007) Computers in Biology and Medicine , vol.37 , Issue.1 , pp. 21-27
    • Çomak, E.1    Arslan, A.2    Turkoglu, I.3
  • 17
    • 0022954491 scopus 로고    scopus 로고
    • Fabrizi, P. M., Lopes, L. B., & Lockhart, G. B. (1986). Receiver recognition of analogue modulation types. In IERE Conference on Radio Receiver and Associated Systems, Bangor, Wales (pp. 135-140).
  • 18
    • 14944382803 scopus 로고    scopus 로고
    • Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds
    • Fernández Pierna J.A., Baeten V., Michotte Renier A., Cogdill R.P., and Dardenne P. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. Journal of Chemometrics 18 7-8 (2004) 341-349
    • (2004) Journal of Chemometrics , vol.18 , Issue.7-8 , pp. 341-349
    • Fernández Pierna, J.A.1    Baeten, V.2    Michotte Renier, A.3    Cogdill, R.P.4    Dardenne, P.5
  • 19
    • 33747881516 scopus 로고    scopus 로고
    • Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
    • Frias-Martinez E., Sanchez A., and Velez J. Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition. Engineering Applications of Artificial Intelligence 19 6 (2006) 693-704
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.6 , pp. 693-704
    • Frias-Martinez, E.1    Sanchez, A.2    Velez, J.3
  • 20
    • 37349087604 scopus 로고    scopus 로고
    • Friedman, J. H. (1997). Another approach to polychotomous classification. Technical Report, Department of Statistics, Stanford University.
  • 21
    • 37349132068 scopus 로고    scopus 로고
    • Gunn, S. R. (1998). Support vector machines for classification and regression. Technical Report, Image speech and intelligent systems research group, University of Southampton, UK, 1998. Accessed 30.07.04.
  • 23
    • 0029255714 scopus 로고
    • Likelihood-methods for MPSK modulation classification
    • Huang C., and Polydoros A. Likelihood-methods for MPSK modulation classification. IEEE Transactions on Communications 43 Feb./Mar./Apr. (1995) 1493-1504
    • (1995) IEEE Transactions on Communications , vol.43 , Issue.Feb.-Mar.-Apr , pp. 1493-1504
    • Huang, C.1    Polydoros, A.2
  • 25
    • 37349023712 scopus 로고    scopus 로고
    • Error correcting codes with optimized Kullback-Leibler distances for text categorization
    • Kindermann J., Paass G., and Leopold E. Error correcting codes with optimized Kullback-Leibler distances for text categorization. PKDD 2001 (2001) 266-276
    • (2001) PKDD 2001 , pp. 266-276
    • Kindermann, J.1    Paass, G.2    Leopold, E.3
  • 27
    • 33749377419 scopus 로고    scopus 로고
    • Lee, M., & Pun, C. (2000). Texture classification using dominant wavelet packet energy features, image analysis and interpretation, 2000. In Proceedings. 4th IEEE Southwest Symposium (pp. 301-304).
  • 28
    • 0031645302 scopus 로고    scopus 로고
    • Liang, H., & Nartimo, I. (1998). A feature extraction algorithm based on wavelet packet decomposition for heart sound signals. In Proceedings of the IEEE-SP International Symposium (pp. 93-96).
  • 29
    • 0021476632 scopus 로고
    • Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters
    • Liedtke F.F. Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters. Siynal Processing 6 4 (1984) 311-323
    • (1984) Siynal Processing , vol.6 , Issue.4 , pp. 311-323
    • Liedtke, F.F.1
  • 31
    • 37349102830 scopus 로고    scopus 로고
    • MATLAB 6.5 version Wavelet Toolbox, MathWorks Company.
  • 32
    • 0034140622 scopus 로고    scopus 로고
    • Digital modulation classification using constellation shape
    • Mobasseri B.G. Digital modulation classification using constellation shape. Signal Processing 80 2 (2000) 251-277
    • (2000) Signal Processing , vol.80 , Issue.2 , pp. 251-277
    • Mobasseri, B.G.1
  • 33
    • 37349085555 scopus 로고    scopus 로고
    • Mohanty, S., & Bhattacharya, S. (2001). Recognition of voice signals for Oriya language using wavelet neural network. STRANS, IIT Kanpur'2001.
  • 34
    • 21644461711 scopus 로고    scopus 로고
    • Mustafa, H., & Doroslovaki, M. (2004). Digital modulation recognition using support vector machine classifier, signals, systems and computers. In Conference record of the thirty-eighth asilomar conference (pp. 2238-2242). Vol. 2.
  • 35
    • 37349097441 scopus 로고    scopus 로고
    • Nagy, P. A. J. (1994). Analysis of a method for classification of analogue modulated radio signals. In European Association for Signal Processing VII Conference 94 (pp. 1015-1018). Edinburgh, Scotland.
  • 36
    • 0029389763 scopus 로고
    • Recognition of analogue modulations
    • Nandi A.K., and Azzouz E.E. Recognition of analogue modulations. Signal Processing 46 2 (1995) 211-222
    • (1995) Signal Processing , vol.46 , Issue.2 , pp. 211-222
    • Nandi, A.K.1    Azzouz, E.E.2
  • 37
    • 0030649673 scopus 로고    scopus 로고
    • Modulation recognition using artificial neural networks
    • January
    • Nandi A.K., and Azzouz E.E. Modulation recognition using artificial neural networks. Signal Processing 56 2 (1997) 165-175 January
    • (1997) Signal Processing , vol.56 , Issue.2 , pp. 165-175
    • Nandi, A.K.1    Azzouz, E.E.2
  • 38
    • 84944073718 scopus 로고    scopus 로고
    • Comparative exudate classification using support vector machines and neural networks
    • Fifth International Conference on Medical Image Computing and Computer-Assisted Intervention. Dohi T., and Kikinis R. (Eds), Springer, Berlin September
    • Osareh A., Mirmehdi M., Thomas B., and Markham R. Comparative exudate classification using support vector machines and neural networks. In: Dohi T., and Kikinis R. (Eds). Fifth International Conference on Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science Vol. 2489 (2002), Springer, Berlin 413-420 September
    • (2002) Lecture Notes in Computer Science , vol.2489 , pp. 413-420
    • Osareh, A.1    Mirmehdi, M.2    Thomas, B.3    Markham, R.4
  • 39
    • 84888364466 scopus 로고    scopus 로고
    • Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000). Lrge margin dags for multiclass classification. In Advances in Neural Information Processing Systems. Denver, Colorado.
  • 40
    • 0025476088 scopus 로고
    • On the detection and classification of quadrature digital modulations in broad-band noise
    • Polydoros A., and Kim K. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Transactions on Communications 38 8 (1990) 1199-1211
    • (1990) IEEE Transactions on Communications , vol.38 , Issue.8 , pp. 1199-1211
    • Polydoros, A.1    Kim, K.2
  • 42
    • 0000118475 scopus 로고    scopus 로고
    • Wavelet entropy: a measure of order in evoked potentials
    • Elsevier, Amsterdam
    • Quiroga R.Q., Roso O.A., and Basar E. Wavelet entropy: a measure of order in evoked potentials. Evoked Potentials and Magnetic Fields (1999), Elsevier, Amsterdam 298-302
    • (1999) Evoked Potentials and Magnetic Fields , pp. 298-302
    • Quiroga, R.Q.1    Roso, O.A.2    Basar, E.3
  • 43
    • 0028699218 scopus 로고    scopus 로고
    • Ta, N. P. (1994). A wavelet packet approach to radio signal classification, time-frequency and time-scale analysis. In Proceedings of the IEEE-SP International Symposium (pp. 508-511).
  • 45
    • 0347985151 scopus 로고    scopus 로고
    • Automatic digital modulation recognition using artificial neural network and genetic algorithm
    • Wong M.L.D., and Nandi A.K. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing 84 (2004) 351-365
    • (2004) Signal Processing , vol.84 , pp. 351-365
    • Wong, M.L.D.1    Nandi, A.K.2
  • 46
    • 82055176907 scopus 로고    scopus 로고
    • Yao, Y., Frasconi, P., & Pontil, M. (2001). Fingerprint classification with combinations of support vector machines. AVBPA 2001, LNCS 2091, pp. 253-258.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.