메뉴 건너뛰기




Volumn 74, Issue 8, 2012, Pages 1938-1955

Least Squares Estimation in Stochastic Biochemical Networks

Author keywords

Biochemical network; Density dependent Markov jump process; Law of mass action; Least squares estimation; Reverse engineering; Stochastic trajectory

Indexed keywords

ARTICLE; CHEMICAL MODEL; GENE REGULATORY NETWORK; KINETICS; LONG INTERSPERSED REPEAT; REGRESSION ANALYSIS; STATISTICS;

EID: 84864026649     PISSN: 00928240     EISSN: 15229602     Source Type: Journal    
DOI: 10.1007/s11538-012-9744-y     Document Type: Article
Times cited : (9)

References (32)
  • 2
    • 0030848624 scopus 로고    scopus 로고
    • A test case of correlation metric construction of a reaction pathway from measurements
    • Arkin, A., Shen, P., & Ross, J. (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science, 277, 1275-1279.
    • (1997) Science , vol.277 , pp. 1275-1279
    • Arkin, A.1    Shen, P.2    Ross, J.3
  • 4
    • 77954531383 scopus 로고    scopus 로고
    • Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models
    • Baker, S. M., Schallau, K., & Junker, B. H. (2010). Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. J. Integr. Bioinform., 7(3).
    • (2010) J. Integr. Bioinform. , vol.7 , Issue.3
    • Baker, S.M.1    Schallau, K.2    Junker, B.H.3
  • 5
    • 33744775760 scopus 로고    scopus 로고
    • Asymptotic analysis of multiscale approximations to reaction networks
    • Ball, K., Kurtz, T., Popovic, L., & Rempala, G. (2006). Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab., 16(4), 1925-1961.
    • (2006) Ann. Appl. Probab. , vol.16 , Issue.4 , pp. 1925-1961
    • Ball, K.1    Kurtz, T.2    Popovic, L.3    Rempala, G.4
  • 8
    • 83755163669 scopus 로고    scopus 로고
    • Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling
    • Choi, B., & Rempala, G. A. (2012). Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling. Biostatistics, 13(1), 153-165.
    • (2012) Biostatistics , vol.13 , Issue.1 , pp. 153-165
    • Choi, B.1    Rempala, G.A.2
  • 9
    • 0003432682 scopus 로고
    • Wiley series in probability and mathematical statistics: probability and mathematical statisticsCharacterization and convergence, New York: Wiley
    • Ethier, S. N., & Kurtz, T. G. (1986). Wiley series in probability and mathematical statistics: probability and mathematical statistics: Markov processes. New York: Wiley. Characterization and convergence.
    • (1986) Markov Processes
    • Ethier, S.N.1    Kurtz, T.G.2
  • 11
    • 44049109914 scopus 로고
    • A rigorous derivation of the chemical master equation
    • Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A, 188, 404-425.
    • (1992) Physica A , vol.188 , pp. 404-425
    • Gillespie, D.T.1
  • 12
    • 84867344321 scopus 로고    scopus 로고
    • Statistical model for biochemical networks inference
    • doi:10.1080/03610918.2011.633200
    • Kim, J., Craciun, G., Pantea, C., & Rempala, G. (2011). Statistical model for biochemical networks inference. Commun. Stat., Simul. Comput. doi: 10. 1080/03610918. 2011. 633200.
    • (2011) Commun. Stat., Simul. Comput.
    • Kim, J.1    Craciun, G.2    Pantea, C.3    Rempala, G.4
  • 13
    • 79957743805 scopus 로고    scopus 로고
    • Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
    • Komorowski, M., Costa, M. J., Rand, D. A., & Stumpf, M. P. H. (2011). Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. USA, 108(21), 8645-8650.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , Issue.21 , pp. 8645-8650
    • Komorowski, M.1    Costa, M.J.2    Rand, D.A.3    Stumpf, M.P.H.4
  • 14
    • 0001455869 scopus 로고
    • The relationship between stochastic and deterministic models for chemical reactions
    • Kurtz, T. G. (1972). The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57(7), 2976-2978.
    • (1972) J. Chem. Phys. , vol.57 , Issue.7 , pp. 2976-2978
    • Kurtz, T.G.1
  • 17
    • 36248989626 scopus 로고    scopus 로고
    • Theory and limitations of genetic network inference from microarray data
    • Margolin, A. A., & Califano, A. (2007). Theory and limitations of genetic network inference from microarray data. Ann. N. Y. Acad. Sci., 1115, 51-72.
    • (2007) Ann. N.Y. Acad. Sci. , vol.1115 , pp. 51-72
    • Margolin, A.A.1    Califano, A.2
  • 18
    • 0036549592 scopus 로고    scopus 로고
    • Hela cells 50 years on: the good, the bad and the ugly
    • Masters, J. R. (2002). Hela cells 50 years on: the good, the bad and the ugly. Nat. Rev. Cancer, 2(4), 315-319.
    • (2002) Nat. Rev. Cancer , vol.2 , Issue.4 , pp. 315-319
    • Masters, J.R.1
  • 19
    • 0001601301 scopus 로고
    • Stochastic approach to chemical kinetics
    • McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. J. Appl. Probab., 4, 413-478.
    • (1967) J. Appl. Probab. , vol.4 , pp. 413-478
    • McQuarrie, D.A.1
  • 20
    • 3042573602 scopus 로고    scopus 로고
    • Flow cytometric analysis of kinase signaling cascades
    • Perez, O. D., Krutzik, P. O., & Nolan, G. P. (2004). Flow cytometric analysis of kinase signaling cascades. Methods Mol. Biol., 263, 67-94.
    • (2004) Methods Mol. Biol. , vol.263 , pp. 67-94
    • Perez, O.D.1    Krutzik, P.O.2    Nolan, G.P.3
  • 21
    • 78650680756 scopus 로고    scopus 로고
    • Identifiability and observability analysis for experimental design in nonlinear dynamical models
    • Raue, A., Becker, V., Klingmüller, U., & Timmer, J. (2010). Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos, 20(4), 045105.
    • (2010) Chaos , vol.20 , Issue.4 , pp. 045105
    • Raue, A.1    Becker, V.2    Klingmüller, U.3    Timmer, J.4
  • 22
    • 33746907501 scopus 로고    scopus 로고
    • A stochastic model of gene transcription: an application to l1 retrotransposition events
    • Rempala, G. A., Ramos, K. S., & Kalbfleisch, T. (2006). A stochastic model of gene transcription: an application to l1 retrotransposition events. J. Theor. Biol., 242(1), 101-116.
    • (2006) J. Theor. Biol. , vol.242 , Issue.1 , pp. 101-116
    • Rempala, G.A.1    Ramos, K.S.2    Kalbfleisch, T.3
  • 23
    • 34248349453 scopus 로고    scopus 로고
    • Validation of a mathematical model of gene transcription in aggregated cellular systems: application to l1 retrotransposition
    • Rempala, G. A., Ramos, K. S., Kalbfleisch, T., & Teneng, I. (2007). Validation of a mathematical model of gene transcription in aggregated cellular systems: application to l1 retrotransposition. J. Comput. Biol., 14(3), 85-95.
    • (2007) J. Comput. Biol. , vol.14 , Issue.3 , pp. 85-95
    • Rempala, G.A.1    Ramos, K.S.2    Kalbfleisch, T.3    Teneng, I.4
  • 24
    • 0041744850 scopus 로고    scopus 로고
    • On the deduction of chemical reaction pathways from measurements of time series of concentrations
    • Samoilov, M., Arkin, A., & Ross, J. (2001). On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos, 11(1), 108-114.
    • (2001) Chaos , vol.11 , Issue.1 , pp. 108-114
    • Samoilov, M.1    Arkin, A.2    Ross, J.3
  • 26
    • 79953156419 scopus 로고    scopus 로고
    • Geometry of nonlinear least squares with applications to sloppy models and optimization
    • Transtrum, M. K., Machta, B. B., & Sethna, J. P. (2011). Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 83(3 Pt 2), 036701.
    • (2011) Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. , vol.83 , Issue.3 Pt 2 , pp. 036701
    • Transtrum, M.K.1    Machta, B.B.2    Sethna, J.P.3
  • 28
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • Wilkinson, D. J. (2009). Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10(2), 122-133.
    • (2009) Nat. Rev. Genet. , vol.10 , Issue.2 , pp. 122-133
    • Wilkinson, D.J.1
  • 29
    • 77956231279 scopus 로고    scopus 로고
    • Statistical inference for noisy nonlinear ecological dynamic systems
    • Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310), 1102-1104.
    • (2010) Nature , vol.466 , Issue.7310 , pp. 1102-1104
    • Wood, S.N.1
  • 30
    • 84887212461 scopus 로고    scopus 로고
    • Investigating differential dynamics of the mapk signaling cascade using a multi-parametric global sensitivity analysis
    • Yoon, J., & Deisboeck, T. S. (2009). Investigating differential dynamics of the mapk signaling cascade using a multi-parametric global sensitivity analysis. PLoS ONE, 4(2), e4560.
    • (2009) PLoS ONE , vol.4 , Issue.2
    • Yoon, J.1    Deisboeck, T.S.2
  • 31
    • 2142781606 scopus 로고    scopus 로고
    • Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis
    • Zacharof, A. I., & Butler, A. P. (2004). Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis. Waste Manag., 24(5), 453-462.
    • (2004) Waste Manag. , vol.24 , Issue.5 , pp. 453-462
    • Zacharof, A.I.1    Butler, A.P.2
  • 32
    • 54249099099 scopus 로고    scopus 로고
    • Reverse engineering intracellular biochemical networks
    • Zamir, E., & Bastiaens, P. I. H. (2008). Reverse engineering intracellular biochemical networks. Nat. Chem. Biol., 4(11), 643-647.
    • (2008) Nat. Chem. Biol. , vol.4 , Issue.11 , pp. 643-647
    • Zamir, E.1    Bastiaens, P.I.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.