-
1
-
-
85081444373
-
-
ATHREYA, K. B. and NEY, P. E. (2004). Branching Processes. Dover, Mineola, NY. MR2047480
-
ATHREYA, K. B. and NEY, P. E. (2004). Branching Processes. Dover, Mineola, NY. MR2047480
-
-
-
-
2
-
-
84977842356
-
Branching process approximation of epidemic models
-
MR1211216
-
BALL, F. and DONELLY, P. (1992). Branching process approximation of epidemic models. Theory Probab. Appl. 37 119-121. MR1211216
-
(1992)
Theory Probab. Appl
, vol.37
, pp. 119-121
-
-
BALL, F.1
DONELLY, P.2
-
3
-
-
22944480262
-
The slow-scale stochastic simulation algorithm
-
CAO, Y., GILLESPIE, D. T. and PETZOLD, L. R. (2005). The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122 014116.
-
(2005)
J. Chem. Phys
, vol.122
, pp. 014116
-
-
CAO, Y.1
GILLESPIE, D.T.2
PETZOLD, L.R.3
-
4
-
-
85081450432
-
-
ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes. Wiley, New York. MR0838085
-
ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes. Wiley, New York. MR0838085
-
-
-
-
5
-
-
85081443460
-
-
GARDINER, C. W. (2004). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd ed. Springer, Berlin. MR2053476
-
GARDINER, C. W. (2004). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd ed. Springer, Berlin. MR2053476
-
-
-
-
6
-
-
0037109565
-
Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics
-
HASELTINE, E. L. and RAWLINGS, J. B. (2002). Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117 6959-6969.
-
(2002)
J. Chem. Phys
, vol.117
, pp. 6959-6969
-
-
HASELTINE, E.L.1
RAWLINGS, J.B.2
-
7
-
-
0000660738
-
Strong approximation theorems for density dependent Markov chains
-
MR0464414
-
KURTZ, T. G. (1977/78). Strong approximation theorems for density dependent Markov chains. Stochastic Process. Appl. 6 223-240. MR0464414
-
(1977)
Stochastic Process. Appl
, vol.6
, pp. 223-240
-
-
KURTZ, T.G.1
-
8
-
-
85081448255
-
-
KURTZ, T. G. (1992). Averaging for martingale problems and stochastic approximation. Applied Stochastic Analysis. Lecture Notes in Control and Inform. Sci. 77 186-209. Springer, Berlin. MR1169928
-
KURTZ, T. G. (1992). Averaging for martingale problems and stochastic approximation. Applied Stochastic Analysis. Lecture Notes in Control and Inform. Sci. 77 186-209. Springer, Berlin. MR1169928
-
-
-
-
9
-
-
0037444724
-
Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm
-
RAO, C. V. and ARKIN, A. P. (2003). Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. 118 4999-5010.
-
(2003)
J. Chem. Phys
, vol.118
, pp. 4999-5010
-
-
RAO, C.V.1
ARKIN, A.P.2
-
10
-
-
0036400749
-
Stochastic vs. deterministic modeling of intracellular viral kinetics
-
MR2026325
-
SRIVASTAVA, R., You, L., SUMMERS, J. and YIN, J. (2002). Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theoret. Biol. 218 309-321. MR2026325
-
(2002)
J. Theoret. Biol
, vol.218
, pp. 309-321
-
-
SRIVASTAVA, R.1
You, L.2
SUMMERS, J.3
YIN, J.4
-
11
-
-
0000415561
-
Quasi-steady-state approximation for chemical reaction networks
-
MR1635129
-
STIEFENHOFER, M. (1998). Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36 593-609. MR1635129
-
(1998)
J. Math. Biol
, vol.36
, pp. 593-609
-
-
STIEFENHOFER, M.1
-
12
-
-
85081442190
-
-
VAN KAMPEN, N. G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam. MR0648937
-
VAN KAMPEN, N. G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam. MR0648937
-
-
-
|