메뉴 건너뛰기




Volumn 9, Issue 1, 2009, Pages 237-244

Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion

Author keywords

Artificial neural network; Austenitic stainless steel; Back propagation; Deformation behavior; Hot torsion; Resilient propagation; Sensitivity

Indexed keywords

BACKPROPAGATION; DEFORMATION; IMAGE CLASSIFICATION; INERT GAS WELDING; NETWORK PROTOCOLS; NEURAL NETWORKS; SENSOR NETWORKS; STEEL; STEEL CORROSION; STEEL METALLURGY; STRAIN RATE; TORSION TESTING; TORSIONAL STRESS;

EID: 53749085067     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2008.03.016     Document Type: Article
Times cited : (196)

References (29)
  • 1
    • 0023287518 scopus 로고
    • The structure of adiabatic shear bands in metals: a critical review
    • Timothy S.P. The structure of adiabatic shear bands in metals: a critical review. Acta Metall. 35 (1987) 301-306
    • (1987) Acta Metall. , vol.35 , pp. 301-306
    • Timothy, S.P.1
  • 2
    • 0348107533 scopus 로고
    • Dislocation-mechanics-based constitutive relations for materials dynamic calculations
    • Zerilli F.J., and Armstrong R.M. Dislocation-mechanics-based constitutive relations for materials dynamic calculations. J. Appl. Phys. 61 (1987) 1816-1825
    • (1987) J. Appl. Phys. , vol.61 , pp. 1816-1825
    • Zerilli, F.J.1    Armstrong, R.M.2
  • 3
    • 0023862814 scopus 로고
    • A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
    • Follansbee P.S., and Kocks U.F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36 (1988) 81-93
    • (1988) Acta Metall. , vol.36 , pp. 81-93
    • Follansbee, P.S.1    Kocks, U.F.2
  • 4
    • 0026747220 scopus 로고
    • Assessment of simple flow stress relationships using literature data for a range of steels
    • Rao K.P., and Hawbolt E.B. Assessment of simple flow stress relationships using literature data for a range of steels. J. Mater. Process. Technol. 29 (1992) 15-40
    • (1992) J. Mater. Process. Technol. , vol.29 , pp. 15-40
    • Rao, K.P.1    Hawbolt, E.B.2
  • 5
    • 0037574055 scopus 로고
    • The high temperature and high strain rate behavior of a plain carbon and HSLA steel
    • Baragar D.L. The high temperature and high strain rate behavior of a plain carbon and HSLA steel. J. Mech. Working Technol. 14 (1987) 295-307
    • (1987) J. Mech. Working Technol. , vol.14 , pp. 295-307
    • Baragar, D.L.1
  • 7
    • 0026622732 scopus 로고
    • Development of constitutive relationships using compression testing of a medium carbon steel
    • Rao K.P., and Hawbolt E.B. Development of constitutive relationships using compression testing of a medium carbon steel. Trans. ASME J. Eng. Mater. Technol. 114 (1992) 116-123
    • (1992) Trans. ASME J. Eng. Mater. Technol. , vol.114 , pp. 116-123
    • Rao, K.P.1    Hawbolt, E.B.2
  • 8
    • 0033078679 scopus 로고    scopus 로고
    • Using neural networks to predict parameters in the hot working of aluminum alloys
    • Chuan M.S., Biglou J., Lenard J.G., and Kim J.G. Using neural networks to predict parameters in the hot working of aluminum alloys. J. Mater. Process. Technol. 86 (1999) 245-251
    • (1999) J. Mater. Process. Technol. , vol.86 , pp. 245-251
    • Chuan, M.S.1    Biglou, J.2    Lenard, J.G.3    Kim, J.G.4
  • 9
    • 12344263947 scopus 로고    scopus 로고
    • Hindcasting of storm waves using neural networks
    • Rao S., and Mandal S. Hindcasting of storm waves using neural networks. Ocean Eng. 32 (2005) 667-684
    • (2005) Ocean Eng. , vol.32 , pp. 667-684
    • Rao, S.1    Mandal, S.2
  • 10
    • 0029371166 scopus 로고
    • Neural network approach to flow stress evaluation in hot deformation
    • Rao K.P., and Prasad Y.K.D.V. Neural network approach to flow stress evaluation in hot deformation. J. Mater. Process. Technol. 53 (1995) 552-566
    • (1995) J. Mater. Process. Technol. , vol.53 , pp. 552-566
    • Rao, K.P.1    Prasad, Y.K.D.V.2
  • 11
    • 0033740232 scopus 로고    scopus 로고
    • Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network
    • Liu J., Chang H., Hsu T.Y., and Ruan X.J. Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network. J. Mater. Process. Technol. 103 (2000) 200-205
    • (2000) J. Mater. Process. Technol. , vol.103 , pp. 200-205
    • Liu, J.1    Chang, H.2    Hsu, T.Y.3    Ruan, X.J.4
  • 12
    • 34249890553 scopus 로고    scopus 로고
    • Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation
    • Mandal S., Sivaprasad P.V., and Venugopal S. Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation. Trans. ASME J. Eng. Mater. Technol. 129 (2007) 242-247
    • (2007) Trans. ASME J. Eng. Mater. Technol. , vol.129 , pp. 242-247
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3
  • 13
    • 33746894601 scopus 로고    scopus 로고
    • Constitutive flow behavior of austenitic stainless steels under hot deformation: artificial neural network modeling to understand, evaluate and predict
    • Mandal S., Sivaprasad P.V., Venugopal S., and Murthy K.P.N. Constitutive flow behavior of austenitic stainless steels under hot deformation: artificial neural network modeling to understand, evaluate and predict. Model. Simulation Mater. Sci. Eng. 14 (2006) 1053-1070
    • (2006) Model. Simulation Mater. Sci. Eng. , vol.14 , pp. 1053-1070
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 14
    • 0001863296 scopus 로고
    • Structural changes during the hot deformation of Copper, Aluminium and Nickel at high temperature and high strain rates
    • Hardwick D., and Tegart W.J.McG. Structural changes during the hot deformation of Copper, Aluminium and Nickel at high temperature and high strain rates. J. Inst. Metals 90 (1961) 17
    • (1961) J. Inst. Metals , vol.90 , pp. 17
    • Hardwick, D.1    Tegart, W.J.McG.2
  • 16
    • 0033098364 scopus 로고    scopus 로고
    • The prediction of the hot strength of steels with an integrated phenomenological and artificial neural network
    • Hodgson P.D., Kong L.X., and Davies C.H.J. The prediction of the hot strength of steels with an integrated phenomenological and artificial neural network. J. Mater. Process. Technol. 87 (1999) 131-138
    • (1999) J. Mater. Process. Technol. , vol.87 , pp. 131-138
    • Hodgson, P.D.1    Kong, L.X.2    Davies, C.H.J.3
  • 17
    • 0019622954 scopus 로고
    • Deformation and unstable flow in hot torsion of Ti-6Al-2Sn-4Zr-2Mo-0.1Si
    • Semiatin S.L., and Lahoti G.D. Deformation and unstable flow in hot torsion of Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metall. Trans. A 12A (1981) 1719-1728
    • (1981) Metall. Trans. A , vol.12 A , pp. 1719-1728
    • Semiatin, S.L.1    Lahoti, G.D.2
  • 18
    • 0032022579 scopus 로고    scopus 로고
    • A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process
    • Juang S.C., Tarang Y.S., and Lii H.R. A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process. J. Mater. Process. Technol. 75 (1998) 54-62
    • (1998) J. Mater. Process. Technol. , vol.75 , pp. 54-62
    • Juang, S.C.1    Tarang, Y.S.2    Lii, H.R.3
  • 19
    • 15844401040 scopus 로고    scopus 로고
    • New globally convergent training scheme based on the resilient propagation algorithm
    • Anastasiadisa A.D., Magoulasa G.D., and Vrahatis M.N. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64 (2005) 253-270
    • (2005) Neurocomputing , vol.64 , pp. 253-270
    • Anastasiadisa, A.D.1    Magoulasa, G.D.2    Vrahatis, M.N.3
  • 20
    • 84943274699 scopus 로고
    • A direct adaptive method for faster back propagation learning: the RPROP algorithm
    • San Francisco, CA
    • Reidimiller M., and Braun H. A direct adaptive method for faster back propagation learning: the RPROP algorithm. Proc. Int. Conf. Neural Networks. San Francisco, CA (1993) 586-591
    • (1993) Proc. Int. Conf. Neural Networks , pp. 586-591
    • Reidimiller, M.1    Braun, H.2
  • 22
    • 0041691046 scopus 로고    scopus 로고
    • The applicability of neural network model to predict flow stress for carbon steel
    • Phaniraj M.P., and Lahiri A.K. The applicability of neural network model to predict flow stress for carbon steel. J. Mater. Process. Technol. 141 (2003) 219-227
    • (2003) J. Mater. Process. Technol. , vol.141 , pp. 219-227
    • Phaniraj, M.P.1    Lahiri, A.K.2
  • 23
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S., and Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 6 (2006) 295-306
    • (2006) Appl. Soft Comput. , vol.6 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 25
    • 53749101320 scopus 로고    scopus 로고
    • S.Venugoapl, PhD thesis, Department of Mechanical Engineering, University of Madras, 1993.
    • S.Venugoapl, PhD thesis, Department of Mechanical Engineering, University of Madras, 1993.
  • 26
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy M.K., and Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178 (2004) 389-397
    • (2004) Ecol. Model. , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 27
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. Artif. Intell. Expert 6 (1991) 47-51
    • (1991) Artif. Intell. Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 29
    • 0023427913 scopus 로고
    • The effect of temperature and strain rate on the plastic flow and ductility of ultra-fined grained type 316 stainless steel
    • Varin R.A. The effect of temperature and strain rate on the plastic flow and ductility of ultra-fined grained type 316 stainless steel. Mater. Sci. Eng. A 94 (1987) 93-107
    • (1987) Mater. Sci. Eng. A , vol.94 , pp. 93-107
    • Varin, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.