-
1
-
-
0035113447
-
Thermal process calculations using artificial neural network models
-
Afaghi M., Ramaswamy H.S., and Prasher S.O. Thermal process calculations using artificial neural network models. Food Res. Int. 34 (2001) 55-65
-
(2001)
Food Res. Int.
, vol.34
, pp. 55-65
-
-
Afaghi, M.1
Ramaswamy, H.S.2
Prasher, S.O.3
-
2
-
-
0001850779
-
-
Ra-Ma, Madrid pp. 259-283
-
Coronado J.L., Corral A., López P., Miñano R., Ruiz B., and Villén J. Estadística aplicada con Statgraphics (1994), Ra-Ma, Madrid pp. 259-283
-
(1994)
Estadística aplicada con Statgraphics
-
-
Coronado, J.L.1
Corral, A.2
López, P.3
Miñano, R.4
Ruiz, B.5
Villén, J.6
-
4
-
-
33947202006
-
-
The MathWorks, Inc., MA, USA
-
Demuth H., Beale M., and Hagan M. MATLAB User's Guide, v 4.0.6: Neural Network Toolbox (2005), The MathWorks, Inc., MA, USA
-
(2005)
MATLAB User's Guide, v 4.0.6: Neural Network Toolbox
-
-
Demuth, H.1
Beale, M.2
Hagan, M.3
-
5
-
-
0034148321
-
A modelling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics
-
Denys S., Van Loey A.M., and Hendrickx M.E. A modelling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innov. Food Sci. Emerg. Technol. 1 (2000) 5-19
-
(2000)
Innov. Food Sci. Emerg. Technol.
, vol.1
, pp. 5-19
-
-
Denys, S.1
Van Loey, A.M.2
Hendrickx, M.E.3
-
7
-
-
0031733749
-
Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products
-
Geeraerd A.H., Herremans C.H., Cenens C., and Van Impe J.G. Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int. J. Food Microbiol. 44 (1998) 49-68
-
(1998)
Int. J. Food Microbiol.
, vol.44
, pp. 49-68
-
-
Geeraerd, A.H.1
Herremans, C.H.2
Cenens, C.3
Van Impe, J.G.4
-
8
-
-
0034555366
-
Use of genetic artificial neural networks and spectral imaging for defect detection on cherries
-
Guyer D., and Yang X. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comp. Electron. Agric. 29 3 (2000) 179-194
-
(2000)
Comp. Electron. Agric.
, vol.29
, Issue.3
, pp. 179-194
-
-
Guyer, D.1
Yang, X.2
-
9
-
-
0003029188
-
Food quality prediction with neural networks
-
Ni H., and Gunasekaran S. Food quality prediction with neural networks. Food Technol. 52 10 (1998) 60-65
-
(1998)
Food Technol.
, vol.52
, Issue.10
, pp. 60-65
-
-
Ni, H.1
Gunasekaran, S.2
-
10
-
-
0037604616
-
Modelling heat transfer in high pressure food processing: a review
-
Otero L., and Sanz P.D. Modelling heat transfer in high pressure food processing: a review. Innov. Food Sci. Emerg. Technol. 4 (2003) 121-134
-
(2003)
Innov. Food Sci. Emerg. Technol.
, vol.4
, pp. 121-134
-
-
Otero, L.1
Sanz, P.D.2
-
12
-
-
0036022013
-
A model for real thermal control in high-pressure treatment of foods
-
Otero L., Molina-García A.D., Ramos A.M., and Sanz P.D. A model for real thermal control in high-pressure treatment of foods. Biotechnol. Prog. 18 4 (2002) 904-908
-
(2002)
Biotechnol. Prog.
, vol.18
, Issue.4
, pp. 904-908
-
-
Otero, L.1
Molina-García, A.D.2
Ramos, A.M.3
Sanz, P.D.4
-
13
-
-
33748535412
-
A model to design high-pressure processes towards an uniform temperature distribution
-
Otero L., Ramos A.M., de Elvira C., and Sanz P.D. A model to design high-pressure processes towards an uniform temperature distribution. J. Food Eng. 78 4 (2007) 1463-1470
-
(2007)
J. Food Eng.
, vol.78
, Issue.4
, pp. 1463-1470
-
-
Otero, L.1
Ramos, A.M.2
de Elvira, C.3
Sanz, P.D.4
-
15
-
-
20744444912
-
Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithms
-
Plumb A.P., Rowe R.C., York P., and Brown M. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithms. Eur. J. Pharm. Sci. 25 (2005) 395-405
-
(2005)
Eur. J. Pharm. Sci.
, vol.25
, pp. 395-405
-
-
Plumb, A.P.1
Rowe, R.C.2
York, P.3
Brown, M.4
-
16
-
-
0001223496
-
Prediction of dough rheological properties using neural networks
-
Ruan R., Almaer S., and Zhang J. Prediction of dough rheological properties using neural networks. Cereal Chem. 72 3 (1995) 308-311
-
(1995)
Cereal Chem.
, vol.72
, Issue.3
, pp. 308-311
-
-
Ruan, R.1
Almaer, S.2
Zhang, J.3
-
17
-
-
0019604592
-
Some suggestions for measuring predictive performance
-
Sheiner L.B., and Beal S. Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 9 (1981) 503-512
-
(1981)
J. Pharmacokinet. Biopharm.
, vol.9
, pp. 503-512
-
-
Sheiner, L.B.1
Beal, S.2
-
18
-
-
0036475508
-
Determining thermal effects in high-pressure processing
-
Ting E., Balasubramaniam V.M., and Raghubeer E. Determining thermal effects in high-pressure processing. Food Technol. 56 2 (2002) 31-35
-
(2002)
Food Technol.
, vol.56
, Issue.2
, pp. 31-35
-
-
Ting, E.1
Balasubramaniam, V.M.2
Raghubeer, E.3
-
19
-
-
0142106521
-
A neural network approach for thermal/pressure food processing
-
Torrecilla J.S., Otero L., and Sanz P.D. A neural network approach for thermal/pressure food processing. J. Food Eng. 62 (2004) 89-95
-
(2004)
J. Food Eng.
, vol.62
, pp. 89-95
-
-
Torrecilla, J.S.1
Otero, L.2
Sanz, P.D.3
-
20
-
-
14644435683
-
Artificial neural networks: a promising tool to design and optimize high-pressure food processes
-
Torrecilla J.S., Otero L., and Sanz P.D. Artificial neural networks: a promising tool to design and optimize high-pressure food processes. J. Food Eng. 69 (2005) 299-306
-
(2005)
J. Food Eng.
, vol.69
, pp. 299-306
-
-
Torrecilla, J.S.1
Otero, L.2
Sanz, P.D.3
-
21
-
-
33947273416
-
-
Vacic, V., 2005. Summary of the training functions in Matlab's NN toolbox. http://www.cs.ucr.edu/∼vladimir/cs171/nn_summary.pdf.
-
-
-
|