메뉴 건너뛰기




Volumn 56, Issue 2, 2007, Pages 101-110

Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms

Author keywords

Artificial neural network; Food processing; High pressure; Modeling; Thermal control; Training algorithm

Indexed keywords

ALGORITHMS; FOOD PROCESSING; HIGH PRESSURE EFFECTS; OPTIMIZATION; PRESSURIZATION;

EID: 33947276150     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2007.01.005     Document Type: Article
Times cited : (37)

References (21)
  • 1
    • 0035113447 scopus 로고    scopus 로고
    • Thermal process calculations using artificial neural network models
    • Afaghi M., Ramaswamy H.S., and Prasher S.O. Thermal process calculations using artificial neural network models. Food Res. Int. 34 (2001) 55-65
    • (2001) Food Res. Int. , vol.34 , pp. 55-65
    • Afaghi, M.1    Ramaswamy, H.S.2    Prasher, S.O.3
  • 5
    • 0034148321 scopus 로고    scopus 로고
    • A modelling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics
    • Denys S., Van Loey A.M., and Hendrickx M.E. A modelling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innov. Food Sci. Emerg. Technol. 1 (2000) 5-19
    • (2000) Innov. Food Sci. Emerg. Technol. , vol.1 , pp. 5-19
    • Denys, S.1    Van Loey, A.M.2    Hendrickx, M.E.3
  • 7
    • 0031733749 scopus 로고    scopus 로고
    • Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products
    • Geeraerd A.H., Herremans C.H., Cenens C., and Van Impe J.G. Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int. J. Food Microbiol. 44 (1998) 49-68
    • (1998) Int. J. Food Microbiol. , vol.44 , pp. 49-68
    • Geeraerd, A.H.1    Herremans, C.H.2    Cenens, C.3    Van Impe, J.G.4
  • 8
    • 0034555366 scopus 로고    scopus 로고
    • Use of genetic artificial neural networks and spectral imaging for defect detection on cherries
    • Guyer D., and Yang X. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comp. Electron. Agric. 29 3 (2000) 179-194
    • (2000) Comp. Electron. Agric. , vol.29 , Issue.3 , pp. 179-194
    • Guyer, D.1    Yang, X.2
  • 9
    • 0003029188 scopus 로고    scopus 로고
    • Food quality prediction with neural networks
    • Ni H., and Gunasekaran S. Food quality prediction with neural networks. Food Technol. 52 10 (1998) 60-65
    • (1998) Food Technol. , vol.52 , Issue.10 , pp. 60-65
    • Ni, H.1    Gunasekaran, S.2
  • 10
    • 0037604616 scopus 로고    scopus 로고
    • Modelling heat transfer in high pressure food processing: a review
    • Otero L., and Sanz P.D. Modelling heat transfer in high pressure food processing: a review. Innov. Food Sci. Emerg. Technol. 4 (2003) 121-134
    • (2003) Innov. Food Sci. Emerg. Technol. , vol.4 , pp. 121-134
    • Otero, L.1    Sanz, P.D.2
  • 12
    • 0036022013 scopus 로고    scopus 로고
    • A model for real thermal control in high-pressure treatment of foods
    • Otero L., Molina-García A.D., Ramos A.M., and Sanz P.D. A model for real thermal control in high-pressure treatment of foods. Biotechnol. Prog. 18 4 (2002) 904-908
    • (2002) Biotechnol. Prog. , vol.18 , Issue.4 , pp. 904-908
    • Otero, L.1    Molina-García, A.D.2    Ramos, A.M.3    Sanz, P.D.4
  • 13
    • 33748535412 scopus 로고    scopus 로고
    • A model to design high-pressure processes towards an uniform temperature distribution
    • Otero L., Ramos A.M., de Elvira C., and Sanz P.D. A model to design high-pressure processes towards an uniform temperature distribution. J. Food Eng. 78 4 (2007) 1463-1470
    • (2007) J. Food Eng. , vol.78 , Issue.4 , pp. 1463-1470
    • Otero, L.1    Ramos, A.M.2    de Elvira, C.3    Sanz, P.D.4
  • 14
    • 0032122668 scopus 로고    scopus 로고
    • pH-control system based on artificial neural networks
    • Palancar M.C., Aragón J.M., and Torrecilla J.S. pH-control system based on artificial neural networks. Ind. Eng. Chem. Res. 37 7 (1998) 2729-2740
    • (1998) Ind. Eng. Chem. Res. , vol.37 , Issue.7 , pp. 2729-2740
    • Palancar, M.C.1    Aragón, J.M.2    Torrecilla, J.S.3
  • 15
    • 20744444912 scopus 로고    scopus 로고
    • Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithms
    • Plumb A.P., Rowe R.C., York P., and Brown M. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithms. Eur. J. Pharm. Sci. 25 (2005) 395-405
    • (2005) Eur. J. Pharm. Sci. , vol.25 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Brown, M.4
  • 16
    • 0001223496 scopus 로고
    • Prediction of dough rheological properties using neural networks
    • Ruan R., Almaer S., and Zhang J. Prediction of dough rheological properties using neural networks. Cereal Chem. 72 3 (1995) 308-311
    • (1995) Cereal Chem. , vol.72 , Issue.3 , pp. 308-311
    • Ruan, R.1    Almaer, S.2    Zhang, J.3
  • 17
    • 0019604592 scopus 로고
    • Some suggestions for measuring predictive performance
    • Sheiner L.B., and Beal S. Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 9 (1981) 503-512
    • (1981) J. Pharmacokinet. Biopharm. , vol.9 , pp. 503-512
    • Sheiner, L.B.1    Beal, S.2
  • 18
    • 0036475508 scopus 로고    scopus 로고
    • Determining thermal effects in high-pressure processing
    • Ting E., Balasubramaniam V.M., and Raghubeer E. Determining thermal effects in high-pressure processing. Food Technol. 56 2 (2002) 31-35
    • (2002) Food Technol. , vol.56 , Issue.2 , pp. 31-35
    • Ting, E.1    Balasubramaniam, V.M.2    Raghubeer, E.3
  • 19
    • 0142106521 scopus 로고    scopus 로고
    • A neural network approach for thermal/pressure food processing
    • Torrecilla J.S., Otero L., and Sanz P.D. A neural network approach for thermal/pressure food processing. J. Food Eng. 62 (2004) 89-95
    • (2004) J. Food Eng. , vol.62 , pp. 89-95
    • Torrecilla, J.S.1    Otero, L.2    Sanz, P.D.3
  • 20
    • 14644435683 scopus 로고    scopus 로고
    • Artificial neural networks: a promising tool to design and optimize high-pressure food processes
    • Torrecilla J.S., Otero L., and Sanz P.D. Artificial neural networks: a promising tool to design and optimize high-pressure food processes. J. Food Eng. 69 (2005) 299-306
    • (2005) J. Food Eng. , vol.69 , pp. 299-306
    • Torrecilla, J.S.1    Otero, L.2    Sanz, P.D.3
  • 21
    • 33947273416 scopus 로고    scopus 로고
    • Vacic, V., 2005. Summary of the training functions in Matlab's NN toolbox. http://www.cs.ucr.edu/∼vladimir/cs171/nn_summary.pdf.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.