메뉴 건너뛰기




Volumn 47, Issue 10, 2008, Pages 1347-1358

Artificial neural network models for predicting soil thermal resistivity

Author keywords

Artificial neural network; Empirical relationships; Laboratory investigations; Soils; Thermal resistivity

Indexed keywords

BACKPROPAGATION; CLAY MINERALS; COMPACTION; ESTIMATION; FORECASTING; HEALTH; HEAT RESISTANCE; IMAGE CLASSIFICATION; MATHEMATICAL MODELS; NEURAL NETWORKS; SIZE DISTRIBUTION; SOILS; THERMAL CONDUCTIVITY; THERMODYNAMIC PROPERTIES;

EID: 47549093934     PISSN: 12900729     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijthermalsci.2007.11.001     Document Type: Article
Times cited : (98)

References (50)
  • 1
    • 47549094434 scopus 로고    scopus 로고
    • M.S. Kerstan, Thermal properties of soils, Engineering Experiment Station Bulletin 28, University of Minnesota, Minneapolis, 1949
    • M.S. Kerstan, Thermal properties of soils, Engineering Experiment Station Bulletin 28, University of Minnesota, Minneapolis, 1949
  • 2
    • 47549097294 scopus 로고    scopus 로고
    • M. Van Rooyen, Soil thermal resistivity, Doctoral Thesis, Princeton University, New Jersey, 1958
    • M. Van Rooyen, Soil thermal resistivity, Doctoral Thesis, Princeton University, New Jersey, 1958
  • 4
    • 47549105829 scopus 로고    scopus 로고
    • M.V.B.B. Gangadhara Rao, Soil thermal resistivity, M. Tech. Thesis, Department of Civil Engineering, IIT Bombay, 1998
    • M.V.B.B. Gangadhara Rao, Soil thermal resistivity, M. Tech. Thesis, Department of Civil Engineering, IIT Bombay, 1998
  • 5
    • 47549114779 scopus 로고    scopus 로고
    • M. Van Rooyen, H.F. Winterkorn, Theoretical and practical aspects of the thermal conductivity of soils, and similar granular systems, Bulletin no. 159, U.S. Highway Research Board, 1957, pp. 58-135
    • M. Van Rooyen, H.F. Winterkorn, Theoretical and practical aspects of the thermal conductivity of soils, and similar granular systems, Bulletin no. 159, U.S. Highway Research Board, 1957, pp. 58-135
  • 6
    • 0034281205 scopus 로고    scopus 로고
    • Generalized relationships for estimating soil thermal resistivity
    • Singh D.N., and Devid K. Generalized relationships for estimating soil thermal resistivity. Experimental Thermal and Fluid Science 22 (2000) 133-143
    • (2000) Experimental Thermal and Fluid Science , vol.22 , pp. 133-143
    • Singh, D.N.1    Devid, K.2
  • 8
    • 0028416331 scopus 로고
    • Neural networks in civil engineering-1: Principles and understanding
    • Flood N.K. Neural networks in civil engineering-1: Principles and understanding. Journal of Computing in Civil Engineering 8 2 (1994) 131-148
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, N.K.1
  • 9
    • 0028413247 scopus 로고
    • Neural networks in civil engineering-2: Principles and understanding
    • Flood N.K. Neural networks in civil engineering-2: Principles and understanding. Journal of Computing in Civil Engineering 8 2 (1994) 149-162
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 149-162
    • Flood, N.K.1
  • 10
    • 47549108793 scopus 로고    scopus 로고
    • J.M. Zurada, Introduction to artificial neural systems, West. St. Paul, MN, 1992
    • J.M. Zurada, Introduction to artificial neural systems, West. St. Paul, MN, 1992
  • 13
    • 0037362405 scopus 로고    scopus 로고
    • A neural network approach to describing the fretting fatigue in aluminum-steel couplings
    • Orbanić P., and Fajdiga M. A neural network approach to describing the fretting fatigue in aluminum-steel couplings. International Journal of Fatigue 25 (2003) 201-207
    • (2003) International Journal of Fatigue , vol.25 , pp. 201-207
    • Orbanić, P.1    Fajdiga, M.2
  • 15
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez H., Gokceoglu C., Nefeslioglu H.A., and Kayabasi A. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences 43 2 (2005) 224-235
    • (2005) International Journal of Rock Mechanics and Mining Sciences , vol.43 , Issue.2 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 16
    • 0023566098 scopus 로고    scopus 로고
    • R. Hecht-Nielsen, Kolmogorov's mapping neural network existence theorem, in: Proceedings of the first IEEE international conference on neural networks, San Diego, CA, USA, 1987, pp. 11-14
    • R. Hecht-Nielsen, Kolmogorov's mapping neural network existence theorem, in: Proceedings of the first IEEE international conference on neural networks, San Diego, CA, USA, 1987, pp. 11-14
  • 17
    • 0024928029 scopus 로고    scopus 로고
    • D.R. Hush, Classification with neural networks: a performance analysis, in: Proceedings of the IEEE International Conference on Systems Engineering, Dayton, OH, USA, 1989, pp. 277-280
    • D.R. Hush, Classification with neural networks: a performance analysis, in: Proceedings of the IEEE International Conference on Systems Engineering, Dayton, OH, USA, 1989, pp. 277-280
  • 18
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Boyd M., and Kaastra I. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10 3 (1996) 215-236
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Boyd, M.1    Kaastra, I.2
  • 21
    • 0036722056 scopus 로고    scopus 로고
    • ANN back-propagation prediction model for fracture toughness in microalloy steel
    • Haque M.E., and Sudhakar K.V. ANN back-propagation prediction model for fracture toughness in microalloy steel. International Journal of Fatigue 24 (2002) 1003-1010
    • (2002) International Journal of Fatigue , vol.24 , pp. 1003-1010
    • Haque, M.E.1    Sudhakar, K.V.2
  • 23
    • 0030290373 scopus 로고    scopus 로고
    • Y.M. Najjar, I.A. Basheer, W.A. Naouss, Neural modelling of Kansas soil swelling, Transportation Research, Record No. 1526, 1996, pp. 14-19
    • Y.M. Najjar, I.A. Basheer, W.A. Naouss, Neural modelling of Kansas soil swelling, Transportation Research, Record No. 1526, 1996, pp. 14-19
  • 24
    • 16444382403 scopus 로고    scopus 로고
    • Automated quality assessment of stone aggregates based on laser imaging and a neural network
    • Kim H., Rauch A.F., and Haas C.T. Automated quality assessment of stone aggregates based on laser imaging and a neural network. Journal of Computing in Civil Engineering 18 1 (2004) 58-64
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.1 , pp. 58-64
    • Kim, H.1    Rauch, A.F.2    Haas, C.T.3
  • 25
    • 33745835083 scopus 로고    scopus 로고
    • A comparative analysis of cognitive systems for the prediction of drillability of rocks and wear factor
    • Singh T.N., Gupta A.R., and Sain R. A comparative analysis of cognitive systems for the prediction of drillability of rocks and wear factor. Geotechnical and Geological Engineering 24 (2006) 299-312
    • (2006) Geotechnical and Geological Engineering , vol.24 , pp. 299-312
    • Singh, T.N.1    Gupta, A.R.2    Sain, R.3
  • 26
    • 27444435681 scopus 로고    scopus 로고
    • S.K. Das, P.K. Basudhar, Prediction of coefficient of lateral earth pressure using artificial neural networks, Electronic Journal of Geotechnical Engineering, 10-Bundle A (2005) paper 0506
    • S.K. Das, P.K. Basudhar, Prediction of coefficient of lateral earth pressure using artificial neural networks, Electronic Journal of Geotechnical Engineering, 10-Bundle A (2005) paper 0506
  • 27
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modelling complex systems
    • Goh A.T.C. Back-propagation neural networks for modelling complex systems. Artificial Intelligence in Engineering 9 (1995) 143-151
    • (1995) Artificial Intelligence in Engineering , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 28
    • 0029415712 scopus 로고
    • Modelling soil correlations using neural networks
    • Goh A.T.C. Modelling soil correlations using neural networks. Journal of Computing in Civil Engineering 9 4 (1995) 275-278
    • (1995) Journal of Computing in Civil Engineering , vol.9 , Issue.4 , pp. 275-278
    • Goh, A.T.C.1
  • 29
    • 47549099526 scopus 로고    scopus 로고
    • M.A. Shahin, M.B. Jaksa, H.R. Maier, Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks, Research Report No. R167, The University of Adelaide, Adelaide, 2000
    • M.A. Shahin, M.B. Jaksa, H.R. Maier, Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks, Research Report No. R167, The University of Adelaide, Adelaide, 2000
  • 30
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin M.A., Jaksa M.B., and Maier H.R. Artificial neural network applications in geotechnical engineering. Australian Geomechanics 36 1 (2001) 49-62
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 31
    • 33644906366 scopus 로고    scopus 로고
    • Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil
    • Amegashie F., Shang J.Q., Yanful E.K., Ding W., and Al-Martini S. Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil. Canadian Geotechnical Journal 43 (2006) 100-109
    • (2006) Canadian Geotechnical Journal , vol.43 , pp. 100-109
    • Amegashie, F.1    Shang, J.Q.2    Yanful, E.K.3    Ding, W.4    Al-Martini, S.5
  • 32
    • 47549110503 scopus 로고    scopus 로고
    • Reduction prediction error by transforming input data for neural networks
    • Shi J.J. Reduction prediction error by transforming input data for neural networks. Journal of Computing in Civil Engineering 18 2 (2000) 105-114
    • (2000) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shi, J.J.1
  • 33
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M.A., Maier H.R., and Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering 18 2 (2004) 105-114
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 34
    • 23644459214 scopus 로고    scopus 로고
    • Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification
    • Banimahd M., Yasrobi S.S., and Woodward P.K. Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification. Computers and Geotechnics 32 (2005) 377-386
    • (2005) Computers and Geotechnics , vol.32 , pp. 377-386
    • Banimahd, M.1    Yasrobi, S.S.2    Woodward, P.K.3
  • 35
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • Shahin M.A., and Jaksa M.B. Neural network prediction of pullout capacity of marquee ground anchors. Computers and Geotechnics 32 (2005) 153-163
    • (2005) Computers and Geotechnics , vol.32 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 37
    • 0033170208 scopus 로고    scopus 로고
    • A generalized relationship to estimate thermal resistivity of soils
    • Gangadhara Rao M.V.B.B., and Singh D.N. A generalized relationship to estimate thermal resistivity of soils. Canadian Geotechnical Journal 36 4 (1999) 767-773
    • (1999) Canadian Geotechnical Journal , vol.36 , Issue.4 , pp. 767-773
    • Gangadhara Rao, M.V.B.B.1    Singh, D.N.2
  • 40
    • 14744282320 scopus 로고    scopus 로고
    • A generalized procedure for determining thermal resistivity of soils
    • Dalinaidu A., and Singh D.N. A generalized procedure for determining thermal resistivity of soils. International Journal of Thermal Sciences 43 1 (2004) 43-51
    • (2004) International Journal of Thermal Sciences , vol.43 , Issue.1 , pp. 43-51
    • Dalinaidu, A.1    Singh, D.N.2
  • 42
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of Royal State Society B 36 (1974) 111-147
    • (1974) Journal of Royal State Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 43
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feed forward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 45
    • 1242264861 scopus 로고    scopus 로고
    • A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock
    • Gokceoglu C., and Zorlu K. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence 17 (2004) 61-72
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 61-72
    • Gokceoglu, C.1    Zorlu, K.2
  • 47
    • 0035306877 scopus 로고    scopus 로고
    • A rule based fuzzy model for the prediction of petrophysical rock parameters
    • Finol J., Guo Y.K., and Jing X.D. A rule based fuzzy model for the prediction of petrophysical rock parameters. Journal of Petroleum Science and Engineering 29 (2001) 97-113
    • (2001) Journal of Petroleum Science and Engineering , vol.29 , pp. 97-113
    • Finol, J.1    Guo, Y.K.2    Jing, X.D.3
  • 48
    • 0036785198 scopus 로고    scopus 로고
    • A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition
    • Gokceoglu C. A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Engineering Geology 66 (2002) 39-51
    • (2002) Engineering Geology , vol.66 , pp. 39-51
    • Gokceoglu, C.1
  • 49
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behavior
    • 10.1139/T07-052
    • Erzin Y. Artificial neural networks approach for swell pressure versus soil suction behavior. Canadian Geotechnical Journal 44 (2007) 1-9 10.1139/T07-052
    • (2007) Canadian Geotechnical Journal , vol.44 , pp. 1-9
    • Erzin, Y.1
  • 50
    • 42449124121 scopus 로고    scopus 로고
    • Y. Yukselen, Y. Erzin, Artificial neural networks approach for zeta potential of montmorillonite in the presence of different cations, Environmental Geology (2007), published online 16 July 2007, doi:10.1007/s00254-007-0872-x
    • Y. Yukselen, Y. Erzin, Artificial neural networks approach for zeta potential of montmorillonite in the presence of different cations, Environmental Geology (2007), published online 16 July 2007, doi:10.1007/s00254-007-0872-x


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.