-
1
-
-
33750998494
-
CHO Glycosylation Mutants: GPI Anchor
-
DOI 10.1016/S0076-6879(06)16012-7, PII S0076687906160127, Glycomics
-
Maeda, Y., H. Ashida, and T. Kinoshita. 2006. CHO glycosylation mutants: GPI anchor. Methods Enzymol. 416: 182-205. (Pubitemid 44750111)
-
(2006)
Methods in Enzymology
, vol.416
, pp. 182-205
-
-
Maeda, Y.1
Ashida, H.2
Kinoshita, T.3
-
2
-
-
0035121554
-
GPI-anchored proteins: Now you see 'em, now you don't
-
DOI 10.1096/fj.00-0415hyp
-
Bütikofer, P., T. Malherbe, M. Boschung, and I. Roditi. 2001. GPI-anchored proteins: now you see 'em, now you don't. FASEB J. 15: 545-548. (Pubitemid 32141446)
-
(2001)
FASEB Journal
, vol.15
, Issue.2
, pp. 545-548
-
-
Butikofer, P.1
Malherbe, T.2
Boschung, M.3
Roditi, I.4
-
3
-
-
70449575854
-
Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum
-
Kanzawa, N., Y. Maeda, H. Ogiso, Y. Murakami, R. Taguchi, and T. Kinoshita. 2009. Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 106: 17711-17716.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 17711-17716
-
-
Kanzawa, N.1
Maeda, Y.2
Ogiso, H.3
Murakami, Y.4
Taguchi, R.5
Kinoshita, T.6
-
4
-
-
1842790673
-
Inositol Deacylation of Glycosylphosphatidylinositol-anchored Proteins Is Mediated by Mammalian PGAP1 and Yeast Bst1p
-
DOI 10.1074/jbc.M313755200
-
Tanaka, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279: 14256-14263. (Pubitemid 38468965)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.14
, pp. 14256-14263
-
-
Tanaka, S.1
Maeda, Y.2
Tashima, Y.3
Kinoshita, T.4
-
5
-
-
70349838223
-
GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi
-
Fujita, M., Y. Maeda, M. Ra, Y. Yamaguchi, R. Taguchi, and T. Kinoshita. 2009. GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell. 139: 352-365.
-
(2009)
Cell
, vol.139
, pp. 352-365
-
-
Fujita, M.1
Maeda, Y.2
Ra, M.3
Yamaguchi, Y.4
Taguchi, R.5
Kinoshita, T.6
-
6
-
-
79960238560
-
Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI
-
Fujita, M., R. Watanabe, N. Jaensch, M. Romanova-Michaelides, T. Satoh, M. Kato, H. Riezman, Y. Yamaguchi, Y. Maeda, and T. Kinoshita. 2011. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J. Cell Biol. 194: 61-75.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 61-75
-
-
Fujita, M.1
Watanabe, R.2
Jaensch, N.3
Romanova-Michaelides, M.4
Satoh, T.5
Kato, M.6
Riezman, H.7
Yamaguchi, Y.8
Maeda, Y.9
Kinoshita, T.10
-
7
-
-
34247228098
-
Fatty acid remodeling of GPI-anchored proteins is required for their raft association
-
DOI 10.1091/mbc.E06-10-0885
-
Maeda, Y., Y. Tashima, T. Houjou, M. Fujita, T. Yoko-o, Y. Jigami, R. Taguchi, and T. Kinoshita. 2007. Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol. Biol. Cell. 18: 1497-1506. (Pubitemid 46626645)
-
(2007)
Molecular Biology of the Cell
, vol.18
, Issue.4
, pp. 1497-1506
-
-
Maeda, Y.1
Tashima, Y.2
Houjou, T.3
Fujita, M.4
Yoko-o, T.5
Jigami, Y.6
Taguchi, R.7
Kinoshita, T.8
-
8
-
-
0031964607
-
Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains
-
DOI 10.1074/jbc.273.2.1150
-
Schroeder, R. J., S. N. Ahmed, Y. Zhu, E. London, and D. A. Brown. 1998. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273: 1150-1157. (Pubitemid 28049216)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.2
, pp. 1150-1157
-
-
Schroeder, R.J.1
Ahmed, S.N.2
Zhu, Y.3
London, E.4
Brown, D.A.5
-
9
-
-
0028947029
-
Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes
-
Hanada, K., M. Nishijima, Y. Akamatsu, and R. E. Pagano. 1995. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270: 6254-6260.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 6254-6260
-
-
Hanada, K.1
Nishijima, M.2
Akamatsu, Y.3
Pagano, R.E.4
-
10
-
-
0028142838
-
Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast
-
Horvath, A., C. Sutterlin, U. Manning-Krieg, N. R. Movva, and H. Riezman. 1994. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J. 13: 3687-3695. (Pubitemid 24275014)
-
(1994)
EMBO Journal
, vol.13
, Issue.16
, pp. 3687-3695
-
-
Horvath, A.1
Sutterlin, C.2
Manning-Krieg, U.3
Movva, N.R.4
Riezman, H.5
-
11
-
-
0037147230
-
Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast
-
DOI 10.1074/jbc.M206209200
-
Watanabe, R., K. Funato, K. Venkataraman, A. H. Futerman, and H. Riezman. 2002. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277: 49538-49544. (Pubitemid 36014392)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.51
, pp. 49538-49544
-
-
Watanabe, R.1
Funato, K.2
Venkataraman, K.3
Futerman, A.H.4
Riezman, H.5
-
12
-
-
33645216185
-
Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p
-
DOI 10.1074/jbc.M504684200
-
Okamoto, M., T. Yoko-o, M. Umemura, K. Nakayama, and Y. Jigami. 2006. Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p. J. Biol. Chem. 281: 4013-4023. (Pubitemid 43847826)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.7
, pp. 4013-4023
-
-
Okamoto, M.1
Yoko-o, T.2
Umemura, M.3
Nakayama, K.-I.4
Jigami, Y.5
-
13
-
-
0029166488
-
Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells
-
Mays, R. W., K. A. Siemers, B. A. Fritz, A. W. Lowe, G. van Meer, and W. J. Nelson. 1995. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J. Cell Biol. 130: 1105-1115.
-
(1995)
J. Cell Biol.
, vol.130
, pp. 1105-1115
-
-
Mays, R.W.1
Siemers, K.A.2
Fritz, B.A.3
Lowe, A.W.4
Van Meer, G.5
Nelson, W.J.6
-
15
-
-
77958114881
-
Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells
-
Rivier, A. S., G. A. Castillon, L. Michon, M. Fukasawa, M. Romanova- Michaelides, N. Jaensch, K. Hanada, and R. Watanabe. 2010. Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells. Traffic. 11: 1017-1033.
-
(2010)
Traffic.
, vol.11
, pp. 1017-1033
-
-
Rivier, A.S.1
Castillon, G.A.2
Michon, L.3
Fukasawa, M.4
Romanova- Michaelides, M.5
Jaensch, N.6
Hanada, K.7
Watanabe, R.8
-
16
-
-
52049122869
-
Two sphingolipid transfer proteins, CERT and FAPP2: Their roles in sphingolipid metabolism
-
Yamaji, T., K. Kumagai, N. Tomishige, and K. Hanada. 2008. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life. 60: 511-518.
-
(2008)
IUBMB Life
, vol.60
, pp. 511-518
-
-
Yamaji, T.1
Kumagai, K.2
Tomishige, N.3
Hanada, K.4
-
17
-
-
0032509553
-
Mammalian cell mutants resistant to a sphingomyelin- Directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase
-
Hanada, K., T. Hara, M. Fukasawa, A. Yamaji, M. Umeda, and M. Nishijima. 1998. Mammalian cell mutants resistant to a sphingomyelin- directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J. Biol. Chem. 273: 33787-33794.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 33787-33794
-
-
Hanada, K.1
Hara, T.2
Fukasawa, M.3
Yamaji, A.4
Umeda, M.5
Nishijima, M.6
-
18
-
-
0347611095
-
Molecular machinery for non-vesicular trafficking of ceramide
-
DOI 10.1038/nature02188
-
Hanada, K., K. Kumagai, S. Yasuda, Y. Miura, M. Kawano, M. Fukasawa, and M. Nishijima. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature. 426: 803-809. (Pubitemid 38056858)
-
(2003)
Nature
, vol.426
, Issue.6968
, pp. 803-809
-
-
Hanada, K.1
Kumagai, K.2
Yasuda, S.3
Miura, Y.4
Kawano, M.5
Fukasawa, M.6
Nishijima, M.7
-
19
-
-
0035842889
-
Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast
-
DOI 10.1083/jcb.200105033
-
Funato, K., and H. Riezman. 2001. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155: 949-959. (Pubitemid 34286246)
-
(2001)
Journal of Cell Biology
, vol.155
, Issue.6
, pp. 949-959
-
-
Funato, K.1
Riezman, H.2
-
20
-
-
14844325758
-
Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I
-
DOI 10.1091/mbc.E04-09-0802
-
Ashida, H., Y. Hong, Y. Murakami, N. Shishioh, N. Sugimoto, Y. U. Kim, Y. Maeda, and T. Kinoshita. 2005. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol- mannosyltransferase I. Mol. Biol. Cell. 16: 1439-1448. (Pubitemid 40349577)
-
(2005)
Molecular Biology of the Cell
, vol.16
, Issue.3
, pp. 1439-1448
-
-
Ashida, H.1
Hong, Y.2
Murakami, Y.3
Shishioh, N.4
Sugimoto, N.5
Kim, Y.U.6
Maeda, Y.7
Kinoshita, T.8
-
21
-
-
24044481642
-
New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins
-
DOI 10.1016/j.bbrc.2005.07.177, PII S0006291X05016190
-
Hong, Y., J. Y. Kang, Y. U. Kim, D. J. Shin, H. E. Choy, Y. Maeda, and T. Kinoshita. 2005. New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins. Biochem. Biophys. Res. Commun. 335: 1060-1069. (Pubitemid 41215526)
-
(2005)
Biochemical and Biophysical Research Communications
, vol.335
, Issue.4
, pp. 1060-1069
-
-
Hong, Y.1
Kang, J.Y.2
Kim, Y.U.3
Shin, D.-J.4
Choy, H.E.5
Maeda, Y.6
Kinoshita, T.7
-
22
-
-
0036792614
-
Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin
-
Hong, Y., K. Ohishi, N. Inoue, J. Y. Kang, H. Shime, Y. Horiguchi, F. G. van der Goot, N. Sugimoto, and T. Kinoshita. 2002. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. EMBO J. 21: 5047-5056.
-
(2002)
EMBO J.
, vol.21
, pp. 5047-5056
-
-
Hong, Y.1
Ohishi, K.2
Inoue, N.3
Kang, J.Y.4
Shime, H.5
Horiguchi, Y.6
Van Der Goot, F.G.7
Sugimoto, N.8
Kinoshita, T.9
-
23
-
-
0038247909
-
Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins
-
DOI 10.1091/mbc.E02-12-0794
-
Hong, Y., K. Ohishi, J. Y. Kang, S. Tanaka, N. Inoue, J. Nishimura, Y. Maeda, and T. Kinoshita. 2003. Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell. 14: 1780-1789. (Pubitemid 36583532)
-
(2003)
Molecular Biology of the Cell
, vol.14
, Issue.5
, pp. 1780-1789
-
-
Hong, Y.1
Ohishi, K.2
Kang, J.Y.3
Tanaka, S.4
Inoue, N.5
Nishimura, J.-I.6
Maeda, Y.7
Kinoshita, T.8
-
24
-
-
79251525523
-
Measuring ER stress and the unfolded protein response using mammalian tissue culture system
-
Oslowski, C. M., and F. Urano. 2011. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490: 71-92.
-
(2011)
Methods Enzymol.
, vol.490
, pp. 71-92
-
-
Oslowski, C.M.1
Urano, F.2
-
25
-
-
50049102248
-
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics
-
Matyash, V., G. Liebisch, T. V. Kurzchalia, A. Shevchenko, and D. Schwudke. 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49: 1137-1146.
-
(2008)
J. Lipid Res.
, vol.49
, pp. 1137-1146
-
-
Matyash, V.1
Liebisch, G.2
Kurzchalia, T.V.3
Shevchenko, A.4
Schwudke, D.5
-
26
-
-
0019554465
-
Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids
-
Clarke, N. G., and R. M. Dawson. 1981. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem. J. 195: 301-306.
-
(1981)
Biochem. J.
, vol.195
, pp. 301-306
-
-
Clarke, N.G.1
Dawson, R.M.2
-
27
-
-
84857768828
-
Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells
-
Epstein, S., C. L. Kirkpatrick, G. A. Castillon, M. Muniz, I. Riezman, F. P. David, C. B. Wollheim, and H. Riezman. 2011. Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells. J. Lipid Res. 53: 412-420.
-
(2011)
J. Lipid Res.
, vol.53
, pp. 412-420
-
-
Epstein, S.1
Kirkpatrick, C.L.2
Castillon, G.A.3
Muniz, M.4
Riezman, I.5
David, F.P.6
Wollheim, C.B.7
Riezman, H.8
-
28
-
-
77950600427
-
Direct quantitative determination of ceramide glycosylation in vivo: A new approach to evaluate cellular enzyme activity of glucosylceramide synthase
-
Gupta, V., G. A. Patwardhan, Q. J. Zhang, M. C. Cabot, S. M. Jazwinski, and Y. Y. Liu. 2010. Direct quantitative determination of ceramide glycosylation in vivo: a new approach to evaluate cellular enzyme activity of glucosylceramide synthase. J. Lipid Res. 51: 866-874.
-
(2010)
J. Lipid Res.
, vol.51
, pp. 866-874
-
-
Gupta, V.1
Patwardhan, G.A.2
Zhang, Q.J.3
Cabot, M.C.4
Jazwinski, S.M.5
Liu, Y.Y.6
-
29
-
-
77956042565
-
Yeast lipid analysis and quantification by mass spectrometry
-
Guan, X. L., I. Riezman, M. R. Wenk, and H. Riezman. 2010. Yeast lipid analysis and quantification by mass spectrometry. Methods Enzymol. 470: 369-391.
-
(2010)
Methods Enzymol.
, vol.470
, pp. 369-391
-
-
Guan, X.L.1
Riezman, I.2
Wenk, M.R.3
Riezman, H.4
-
30
-
-
0030035439
-
Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase
-
van der Bijl, P., G. J. Strous, M. Lopes-Cardozo, J. Thomas-Oates, and G. van Meer. 1996. Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase. Biochem. J. 317: 589-597. (Pubitemid 26254000)
-
(1996)
Biochemical Journal
, vol.317
, Issue.2
, pp. 589-597
-
-
Van Der, B.P.1
Strous, G.J.2
Lopes-Cardozo, M.3
Thomas-Oates, J.4
Van Meer, G.5
-
31
-
-
33644853935
-
PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
-
DOI 10.1091/mbc.E05-11-1005
-
Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol. Biol. Cell. 17: 1410-1420. (Pubitemid 43376560)
-
(2006)
Molecular Biology of the Cell
, vol.17
, Issue.3
, pp. 1410-1420
-
-
Tashima, Y.1
Taguchi, R.2
Murata, C.3
Ashida, H.4
Kinoshita, T.5
Maeda, Y.6
-
32
-
-
78149271035
-
Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 bio-synthesis
-
Yamaji, T., K. Nishikawa, and K. Hanada. 2010. Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 bio-synthesis. J. Biol. Chem. 285: 35505-35518.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35505-35518
-
-
Yamaji, T.1
Nishikawa, K.2
Hanada, K.3
-
33
-
-
0000275401
-
Chinese hamster ovary cells lacking GM1 and GD1a synthesize gangliosides upon transfection with human GM2 synthase
-
DOI 10.1016/S0167-4781(97)00117-6, PII S0167478197001176
-
Rosales Fritz, V. M., J. L. Daniotti, and H. J. Maccioni. 1997. Chinese hamster ovary cells lacking GM1 and GD1a synthesize gangliosides upon transfection with human GM2 synthase. Biochim. Biophys. Acta. 1354: 153-158. (Pubitemid 27513075)
-
(1997)
Biochimica et Biophysica Acta - Gene Structure and Expression
, vol.1354
, Issue.2
, pp. 153-158
-
-
Rosales, F.V.M.1
Daniotti, J.L.2
Maccioni, H.J.F.3
-
34
-
-
57049110934
-
Identification and characterization of the human Gb3/CD77 synthase gene promoter
-
DOI 10.1093/glycob/cwn082
-
Okuda, T., and K. Nakayama. 2008. Identification and characterization of the human Gb3/CD77 synthase gene promoter. Glycobiology. 18: 1028-1035. (Pubitemid 352762837)
-
(2008)
Glycobiology
, vol.18
, Issue.12
, pp. 1028-1035
-
-
Okuda, T.1
Nakayama, K.-I.2
-
35
-
-
35348991132
-
Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis
-
DOI 10.1083/jcb.200704091
-
Halter, D., S. Neumann, S. M. van Dijk, J. Wolthoorn, A. M. de Maziere, O. V. Vieira, P. Mattjus, J. Klumperman, G. van Meer, and H. Sprong. 2007. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179: 101-115. (Pubitemid 47606687)
-
(2007)
Journal of Cell Biology
, vol.179
, Issue.1
, pp. 101-115
-
-
Halter, D.1
Neumann, S.2
Van Dijk, S.M.3
Wolthoorn, J.4
De Maziere, A.M.5
Vieira, O.V.6
Mattjus, P.7
Klumperman, J.8
Van Meer, G.9
Sprong, H.10
-
36
-
-
4143153013
-
Drosophila glucosylceramide synthase: A negative regulator of cell death mediated by proapoptotic factors
-
DOI 10.1074/jbc.M400444200
-
Kohyama-Koganeya, A., T. Sasamura, E. Oshima, E. Suzuki, S. Nishihara, R. Ueda, and Y. Hirabayashi. 2004. Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J. Biol. Chem. 279: 35995-36002. (Pubitemid 39100607)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.34
, pp. 35995-36002
-
-
Kohyama-Koganeya, A.1
Sasamura, T.2
Oshima, E.3
Suzuki, E.4
Nishihara, S.5
Ueda, R.6
Hirabayashi, Y.7
-
37
-
-
14844332032
-
CERT mediates intermembrane transfer of various molecular species of ceramides
-
DOI 10.1074/jbc.M409290200
-
Kumagai, K., S. Yasuda, K. Okemoto, M. Nishijima, S. Kobayashi, and K. Hanada. 2005. CERT mediates intermembrane transfer of various molecular species of ceramides. J. Biol. Chem. 280: 6488-6495. (Pubitemid 40341197)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.8
, pp. 6488-6495
-
-
Kumagai, K.1
Yasuda, S.2
Okemoto, K.3
Nishijima, M.4
Kobayashi, S.5
Hanada, K.6
-
38
-
-
0034617298
-
Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
-
DOI 10.1074/jbc.M001913200
-
Hong, Y., Y. Maeda, R. Watanabe, N. Inoue, K. Ohishi, and T. Kinoshita. 2000. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275: 20911-20919. (Pubitemid 30457687)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.27
, pp. 20911-20919
-
-
Hong, Y.1
Maeda, Y.2
Watanabe, R.3
Inoue, N.4
Ohishi, K.5
Kinoshita, T.6
-
39
-
-
38749151549
-
Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane
-
DOI 10.1042/BJ20070234
-
Takida, S., Y. Maeda, and T. Kinoshita. 2008. Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem. J. 409: 555-562. (Pubitemid 351184974)
-
(2008)
Biochemical Journal
, vol.409
, Issue.2
, pp. 555-562
-
-
Takida, S.1
Maeda, Y.2
Kinoshita, T.3
-
40
-
-
80051686141
-
The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling
-
Castillon, G. A., A. Aguilera-Romero, J. Manzano-Lopez, S. Epstein, K. Kajiwara, K. Funato, R. Watanabe, H. Riezman, and M. Muniz. 2011. The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol. Biol. Cell. 22: 2924-2936.
-
(2011)
Mol. Biol. Cell.
, vol.22
, pp. 2924-2936
-
-
Castillon, G.A.1
Aguilera-Romero, A.2
Manzano-Lopez, J.3
Epstein, S.4
Kajiwara, K.5
Funato, K.6
Watanabe, R.7
Riezman, H.8
Muniz, M.9
-
41
-
-
63449128473
-
Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
-
Jonikas, M. C., S. R. Collins, V. Denic, E. Oh, E. M. Quan, V. Schmid, J. Weibezahn, B. Schwappach, P. Walter, J. S. Weissman, et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science. 323: 1693-1697.
-
(2009)
Science
, vol.323
, pp. 1693-1697
-
-
Jonikas, M.C.1
Collins, S.R.2
Denic, V.3
Oh, E.4
Quan, E.M.5
Schmid, V.6
Weibezahn, J.7
Schwappach, B.8
Walter, P.9
Weissman, J.S.10
-
42
-
-
80052825784
-
Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways
-
Promlek, T., Y. Ishiwata-Kimata, M. Shido, M. Sakuramoto, K. Kohno, and Y. Kimata. 2011. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell. 22: 3520-3532.
-
(2011)
Mol. Biol. Cell.
, vol.22
, pp. 3520-3532
-
-
Promlek, T.1
Ishiwata-Kimata, Y.2
Shido, M.3
Sakuramoto, M.4
Kohno, K.5
Kimata, Y.6
-
43
-
-
0035903231
-
Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains
-
Abrami, L., M. Fivaz, T. Kobayashi, T. Kinoshita, R. G. Parton, and F. G. van der Goot. 2001. Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. J. Biol. Chem. 276: 30729-30736.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30729-30736
-
-
Abrami, L.1
Fivaz, M.2
Kobayashi, T.3
Kinoshita, T.4
Parton, R.G.5
Van Der Goot, F.G.6
-
44
-
-
0033593788
-
Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells
-
DOI 10.1083/jcb.144.4.673
-
Fukasawa, M., M. Nishijima, and K. Hanada. 1999. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J. Cell Biol. 144: 673-685. (Pubitemid 29234546)
-
(1999)
Journal of Cell Biology
, vol.144
, Issue.4
, pp. 673-685
-
-
Fukasawa, M.1
Nishijima, M.2
Hanada, K.3
-
45
-
-
15744391942
-
GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol
-
DOI 10.1074/jbc.M413755200
-
Shishioh, N., Y. Hong, K. Ohishi, H. Ashida, Y. Maeda, and T. Kinoshita. 2005. GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J. Biol. Chem. 280: 9728-9734. (Pubitemid 40409671)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.10
, pp. 9728-9734
-
-
Shishioh, N.1
Hong, Y.2
Ohishi, K.3
Ashida, H.4
Maeda, Y.5
Kinoshita, T.6
-
46
-
-
0027513278
-
Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H
-
Puoti, A., and A. Conzelmann. 1993. Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J. Biol. Chem. 268: 7215-7224. (Pubitemid 23105612)
-
(1993)
Journal of Biological Chemistry
, vol.268
, Issue.10
, pp. 7215-7224
-
-
Puoti, A.1
Conzelmann, A.2
-
47
-
-
0034629085
-
Cell surface display and intracellular trafficking of free glycosylphosphatidylinositols in mammalian cells
-
DOI 10.1074/jbc.275.10.7378
-
Baumann, N. A., J. Vidugiriene, C. E. Machamer, and A. K. Menon. 2000. Cell surface display and intracellular trafficking of free glycosylphosphatidylinositols in mammalian cells. J. Biol. Chem. 275: 7378-7389. (Pubitemid 30146292)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.10
, pp. 7378-7389
-
-
Baumann, N.A.1
Vidugiriene, J.2
Machamer, C.E.3
Menon, A.K.4
-
48
-
-
15844367034
-
A novel class of cell surface glycolipids of mammalian cells: Free glycosyl phosphatidylinositols
-
DOI 10.1074/jbc.271.22.12879
-
Singh, N., L. N. Liang, M. L. Tykocinski, and A. M. Tartakoff. 1996. A novel class of cell surface glycolipids of mammalian cells. Free glycosyl phosphatidylinositols. J. Biol. Chem. 271: 12879-12884. (Pubitemid 26176699)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.22
, pp. 12879-12884
-
-
Singh, N.1
Liang, L.-N.2
Tykocinski, M.L.3
Tartakoff, A.M.4
-
49
-
-
77952397200
-
Selective export of human GPI-anchored proteins from the endoplasmic reticulum
-
Bonnon, C., M. W. Wendeler, J. P. Paccaud, and H. P. Hauri. 2010. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123: 1705-1715.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1705-1715
-
-
Bonnon, C.1
Wendeler, M.W.2
Paccaud, J.P.3
Hauri, H.P.4
-
50
-
-
77952855534
-
Modification of sphingoglycolipids and sulfolipids in kidney cell lines under heat stress: Activation of monohexosylceramide synthesis as a ceramide scavenger
-
Niimura, Y., T. Moue, N. Takahashi, and K. Nagai. 2010. Modification of sphingoglycolipids and sulfolipids in kidney cell lines under heat stress: activation of monohexosylceramide synthesis as a ceramide scavenger. Glycobiology. 20: 710-717.
-
(2010)
Glycobiology
, vol.20
, pp. 710-717
-
-
Niimura, Y.1
Moue, T.2
Takahashi, N.3
Nagai, K.4
-
51
-
-
0036692485
-
Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress
-
Uchida, Y., S. Murata, M. Schmuth, M. J. Behne, J. D. Lee, S. Ichikawa, P. M. Elias, Y. Hirabayashi, and W. M. Holleran. 2002. Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. J. Lipid Res. 43: 1293-1302. (Pubitemid 34988177)
-
(2002)
Journal of Lipid Research
, vol.43
, Issue.8
, pp. 1293-1302
-
-
Uchida, Y.1
Murata, S.2
Schmuth, M.3
Behne, M.J.4
Lee, J.D.5
Ichikawa, S.6
Elias, P.M.7
Hirabayashi, Y.8
Holleran, W.M.9
-
52
-
-
33845404854
-
2 activity and involved in lipid remodeling of GPI-anchored proteins
-
DOI 10.1091/mbc.E06-08-0715
-
Fujita, M., M. Umemura, T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell. 17: 5253-5264. (Pubitemid 44907366)
-
(2006)
Molecular Biology of the Cell
, vol.17
, Issue.12
, pp. 5253-5264
-
-
Fujita, M.1
Umemura, M.2
Yoko-O, T.3
Jigami, Y.4
-
53
-
-
33947631189
-
De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes
-
DOI 10.1128/EC.00283-06
-
Sutterwala, S. S., C. H. Creswell, S. Sanyal, A. K. Menon, and J. D. Bangs. 2007. De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes. Eukaryot. Cell. 6: 454-464. (Pubitemid 46492333)
-
(2007)
Eukaryotic Cell
, vol.6
, Issue.3
, pp. 454-464
-
-
Sutterwala, S.S.1
Creswell, C.H.2
Sanyal, S.3
Menon, A.K.4
Bangs, J.D.5
|