-
1
-
-
0002300501
-
Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The Wronskian technique
-
Freeman N.C., and Nimmo J.J.C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The Wronskian technique. Phys. Lett. A 95 (1983) 1-3
-
(1983)
Phys. Lett. A
, vol.95
, pp. 1-3
-
-
Freeman, N.C.1
Nimmo, J.J.C.2
-
2
-
-
0000758935
-
Positon-positon and soliton-positon collisions: KdV case
-
Generalized Wronskian formula for solutions of the KdV equations: First applications, 166 (1992) 209-212
-
Matveev V.B. Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166 (1992) 205-208 Generalized Wronskian formula for solutions of the KdV equations: First applications, 166 (1992) 209-212
-
(1992)
Phys. Lett. A
, vol.166
, pp. 205-208
-
-
Matveev, V.B.1
-
3
-
-
0037774579
-
Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation
-
Ma W.X. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation. Chaos Solitons Fractals 19 (2004) 163-170
-
(2004)
Chaos Solitons Fractals
, vol.19
, pp. 163-170
-
-
Ma, W.X.1
-
4
-
-
4544353887
-
Complexiton solutions of the Toda lattice equation
-
Ma W.X., and Maruno K. Complexiton solutions of the Toda lattice equation. Physica A 343 (2004) 219-237
-
(2004)
Physica A
, vol.343
, pp. 219-237
-
-
Ma, W.X.1
Maruno, K.2
-
5
-
-
1842842984
-
Rational solutions of the Toda lattice equation in Casoratian form
-
Ma W.X., and You Y. Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals 22 (2004) 395-406
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 395-406
-
-
Ma, W.X.1
You, Y.2
-
8
-
-
21844511881
-
Positons for the Toda lattice and related spectral problems
-
Stahlhofen A.A., and Matveev V.B. Positons for the Toda lattice and related spectral problems. J. Phys. A 28 (1995) 1957-1965
-
(1995)
J. Phys. A
, vol.28
, pp. 1957-1965
-
-
Stahlhofen, A.A.1
Matveev, V.B.2
-
9
-
-
0010115186
-
Negaton and positon solutions of the KdV and mKdV hierarchy
-
Rasinariu C., Sukhatme U., and Khare A. Negaton and positon solutions of the KdV and mKdV hierarchy. J. Phys. A 29 (1996) 1803-1823
-
(1996)
J. Phys. A
, vol.29
, pp. 1803-1823
-
-
Rasinariu, C.1
Sukhatme, U.2
Khare, A.3
-
10
-
-
4544337237
-
Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation
-
Maruno K., Ma W.X., and Oikawa M. Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation. J. Phys. Soc. Japan 73 (2004) 831-837
-
(2004)
J. Phys. Soc. Japan
, vol.73
, pp. 831-837
-
-
Maruno, K.1
Ma, W.X.2
Oikawa, M.3
-
11
-
-
0037136277
-
Complexiton solutions to the Korteweg-de Vries equation
-
Ma W.X. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 301 (2002) 35-44
-
(2002)
Phys. Lett. A
, vol.301
, pp. 35-44
-
-
Ma, W.X.1
-
12
-
-
20444439142
-
Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
-
Ma W.X. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos Solitons Fractals 26 (2005) 1453-1458
-
(2005)
Chaos Solitons Fractals
, vol.26
, pp. 1453-1458
-
-
Ma, W.X.1
-
13
-
-
28044444778
-
Complexiton solutions to integrable equations
-
Ma W.X. Complexiton solutions to integrable equations. Nonlinear Anal. 63 (2005) e2461-e2471
-
(2005)
Nonlinear Anal.
, vol.63
-
-
Ma, W.X.1
-
14
-
-
0001681902
-
Théorie de lintumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire
-
Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl. 17 (1872) 55-108
-
Boussinesq J. Théorie de lintumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72 (1871) 755-759 Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl. 17 (1872) 55-108
-
(1871)
C. R. Acad. Sci. Paris
, vol.72
, pp. 755-759
-
-
Boussinesq, J.1
-
16
-
-
0345863967
-
Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics
-
Xu L., Auston D.H., and Hasegawa A. Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics. Phys. Rev. A 45 (1992) 3184-3193
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3184-3193
-
-
Xu, L.1
Auston, D.H.2
Hasegawa, A.3
-
18
-
-
0000315236
-
Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnetics
-
Translated from Zh. Eksper. Teoret. Fiz. 89 (1985) 258-270
-
Turitsyn S.K., and Fal'kovich G.E. Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnetics. Sov. Phys. JETP 62 (1985) 146-152 Translated from Zh. Eksper. Teoret. Fiz. 89 (1985) 258-270
-
(1985)
Sov. Phys. JETP
, vol.62
, pp. 146-152
-
-
Turitsyn, S.K.1
Fal'kovich, G.E.2
-
19
-
-
33947643498
-
Multiple scales asymptotics for atmospheric flows
-
Eur. Math. Soc., Zürich
-
Klein R., Mikusky E., and Owinoh A. Multiple scales asymptotics for atmospheric flows. European congress of mathematics (2005), Eur. Math. Soc., Zürich 201-220
-
(2005)
European congress of mathematics
, pp. 201-220
-
-
Klein, R.1
Mikusky, E.2
Owinoh, A.3
-
20
-
-
27144472702
-
On the role of optimal perturbations in the instability of monochromatic gravity waves
-
094107
-
Achatz U. On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids 17 (2005) 27 094107
-
(2005)
Phys. Fluids
, vol.17
, pp. 27
-
-
Achatz, U.1
-
22
-
-
33947693144
-
Bounds for turbulent transport
-
IUTAM Symposium on geometry and statistics of turbulence (Hayama, 1999), Kluwer Acad. Publ., Dordrecht
-
Constantin P. Bounds for turbulent transport. IUTAM Symposium on geometry and statistics of turbulence (Hayama, 1999). Fluid Mech. Appl. vol. 59 (2001), Kluwer Acad. Publ., Dordrecht 23-31
-
(2001)
Fluid Mech. Appl.
, vol.59
, pp. 23-31
-
-
Constantin, P.1
-
23
-
-
0000060151
-
On stocastization of one-dimensional chains of nonlinear oscillations
-
Translated from Zh. Eksper. Teoret. Fiz. 65 (1973) 219-225
-
Zakharov V.E. On stocastization of one-dimensional chains of nonlinear oscillations. Sov. Phys. JETP 38 (1974) 108-110 Translated from Zh. Eksper. Teoret. Fiz. 65 (1973) 219-225
-
(1974)
Sov. Phys. JETP
, vol.38
, pp. 108-110
-
-
Zakharov, V.E.1
-
24
-
-
36749121906
-
Resonantly coupled nonlinear evolution equations
-
Ablowitz M.J., and Haberman R. Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16 (1975) 2301-2305
-
(1975)
J. Math. Phys.
, vol.16
, pp. 2301-2305
-
-
Ablowitz, M.J.1
Haberman, R.2
-
25
-
-
84980167430
-
Boussinesq's equation on the circle
-
McKean H.P. Boussinesq's equation on the circle. Commun. Pure Appl. Math. 34 (1981) 599-691
-
(1981)
Commun. Pure Appl. Math.
, vol.34
, pp. 599-691
-
-
McKean, H.P.1
-
26
-
-
0037092882
-
The Boussinesq equation revisited
-
Bogdanov L.V., and Zakharov V.E. The Boussinesq equation revisited. Phys. D 165 (2002) 137-162
-
(2002)
Phys. D
, vol.165
, pp. 137-162
-
-
Bogdanov, L.V.1
Zakharov, V.E.2
-
27
-
-
0006071596
-
Destruction of stationary solutions and collapse in the nonlinear string equation
-
Fal'kovich G.E., Spector M.D., and Turitsyn S.K. Destruction of stationary solutions and collapse in the nonlinear string equation. Phys. Lett. A 99 (1983) 271-274
-
(1983)
Phys. Lett. A
, vol.99
, pp. 271-274
-
-
Fal'kovich, G.E.1
Spector, M.D.2
Turitsyn, S.K.3
-
28
-
-
0002464716
-
Direct method in soliton theory
-
Bullough R.K., and Caudrey P.J. (Eds), Springer-Verlag, Berlin
-
Hirota R. Direct method in soliton theory. In: Bullough R.K., and Caudrey P.J. (Eds). Solitons (1980), Springer-Verlag, Berlin 157-176
-
(1980)
Solitons
, pp. 157-176
-
-
Hirota, R.1
-
29
-
-
33947640521
-
Wronskian solutions of the Boussinesq equation - solitons, negatons, positons and complexitons
-
Li C.X., Ma W.X., Liu X.J., and Zeng Y.B. Wronskian solutions of the Boussinesq equation - solitons, negatons, positons and complexitons. Inverse Problems 23 (2007) 279-296
-
(2007)
Inverse Problems
, vol.23
, pp. 279-296
-
-
Li, C.X.1
Ma, W.X.2
Liu, X.J.3
Zeng, Y.B.4
-
31
-
-
0002902111
-
A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian
-
Nimmo J.J.C., and Freeman N.C. A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95 (1983) 4-6
-
(1983)
Phys. Lett. A
, vol.95
, pp. 4-6
-
-
Nimmo, J.J.C.1
Freeman, N.C.2
-
32
-
-
18144382273
-
Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
-
Ma W.X., and You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Amer. Math. Soc. 357 (2005) 1753-1778
-
(2005)
Trans. Amer. Math. Soc.
, vol.357
, pp. 1753-1778
-
-
Ma, W.X.1
You, Y.2
-
33
-
-
0035372279
-
Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method
-
Wazwaz A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 12 (2001) 1549-1556
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 1549-1556
-
-
Wazwaz, A.M.1
-
34
-
-
36849101831
-
Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices
-
Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 14 (1973) 810-814
-
(1973)
J. Math. Phys.
, vol.14
, pp. 810-814
-
-
Hirota, R.1
-
35
-
-
84911743709
-
Rational and ellipic solutions of the Korteweg-de Vries equation and a related many-body problem
-
Airault H., McKean H.P., and Moser J. Rational and ellipic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math. 30 (1977) 95-148
-
(1977)
Commun. Pure Appl. Math.
, vol.30
, pp. 95-148
-
-
Airault, H.1
McKean, H.P.2
Moser, J.3
-
36
-
-
58149212439
-
The structure of the rational solutions to the Boussinesq equation
-
Galkin V.M., Pelinovsky D.E., and Stepanyants Yu.A. The structure of the rational solutions to the Boussinesq equation. Physica D 80 (1995) 246-255
-
(1995)
Physica D
, vol.80
, pp. 246-255
-
-
Galkin, V.M.1
Pelinovsky, D.E.2
Stepanyants, Yu.A.3
-
37
-
-
0004614546
-
Some classes of two-dimensional stationary vortex structures in an ideal fluid
-
Kaptsov O.V. Some classes of two-dimensional stationary vortex structures in an ideal fluid. J. Appl. Mech. Tech. Phys. 39 (1998) 389-392
-
(1998)
J. Appl. Mech. Tech. Phys.
, vol.39
, pp. 389-392
-
-
Kaptsov, O.V.1
-
38
-
-
0002554581
-
The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types
-
Kalantarov V.K., and Ladyzhenskaya O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types. J. Sov. Math. 10 (1978) 53-70
-
(1978)
J. Sov. Math.
, vol.10
, pp. 53-70
-
-
Kalantarov, V.K.1
Ladyzhenskaya, O.A.2
|