메뉴 건너뛰기




Volumn 70, Issue 12, 2009, Pages 4245-4258

A second Wronskian formulation of the Boussinesq equation

Author keywords

Complexitons; Positons; Rational solutions; The Boussinesq equation; Wronskian formulation

Indexed keywords

COMPLEXITONS; POSITONS; RATIONAL SOLUTIONS; THE BOUSSINESQ EQUATION; WRONSKIAN FORMULATION;

EID: 63449113626     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2008.09.010     Document Type: Article
Times cited : (194)

References (38)
  • 1
    • 0002300501 scopus 로고
    • Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The Wronskian technique
    • Freeman N.C., and Nimmo J.J.C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The Wronskian technique. Phys. Lett. A 95 (1983) 1-3
    • (1983) Phys. Lett. A , vol.95 , pp. 1-3
    • Freeman, N.C.1    Nimmo, J.J.C.2
  • 2
    • 0000758935 scopus 로고
    • Positon-positon and soliton-positon collisions: KdV case
    • Generalized Wronskian formula for solutions of the KdV equations: First applications, 166 (1992) 209-212
    • Matveev V.B. Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166 (1992) 205-208 Generalized Wronskian formula for solutions of the KdV equations: First applications, 166 (1992) 209-212
    • (1992) Phys. Lett. A , vol.166 , pp. 205-208
    • Matveev, V.B.1
  • 3
    • 0037774579 scopus 로고    scopus 로고
    • Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation
    • Ma W.X. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation. Chaos Solitons Fractals 19 (2004) 163-170
    • (2004) Chaos Solitons Fractals , vol.19 , pp. 163-170
    • Ma, W.X.1
  • 4
    • 4544353887 scopus 로고    scopus 로고
    • Complexiton solutions of the Toda lattice equation
    • Ma W.X., and Maruno K. Complexiton solutions of the Toda lattice equation. Physica A 343 (2004) 219-237
    • (2004) Physica A , vol.343 , pp. 219-237
    • Ma, W.X.1    Maruno, K.2
  • 5
    • 1842842984 scopus 로고    scopus 로고
    • Rational solutions of the Toda lattice equation in Casoratian form
    • Ma W.X., and You Y. Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals 22 (2004) 395-406
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 395-406
    • Ma, W.X.1    You, Y.2
  • 8
    • 21844511881 scopus 로고
    • Positons for the Toda lattice and related spectral problems
    • Stahlhofen A.A., and Matveev V.B. Positons for the Toda lattice and related spectral problems. J. Phys. A 28 (1995) 1957-1965
    • (1995) J. Phys. A , vol.28 , pp. 1957-1965
    • Stahlhofen, A.A.1    Matveev, V.B.2
  • 9
    • 0010115186 scopus 로고    scopus 로고
    • Negaton and positon solutions of the KdV and mKdV hierarchy
    • Rasinariu C., Sukhatme U., and Khare A. Negaton and positon solutions of the KdV and mKdV hierarchy. J. Phys. A 29 (1996) 1803-1823
    • (1996) J. Phys. A , vol.29 , pp. 1803-1823
    • Rasinariu, C.1    Sukhatme, U.2    Khare, A.3
  • 10
    • 4544337237 scopus 로고    scopus 로고
    • Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation
    • Maruno K., Ma W.X., and Oikawa M. Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation. J. Phys. Soc. Japan 73 (2004) 831-837
    • (2004) J. Phys. Soc. Japan , vol.73 , pp. 831-837
    • Maruno, K.1    Ma, W.X.2    Oikawa, M.3
  • 11
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • Ma W.X. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 301 (2002) 35-44
    • (2002) Phys. Lett. A , vol.301 , pp. 35-44
    • Ma, W.X.1
  • 12
    • 20444439142 scopus 로고    scopus 로고
    • Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
    • Ma W.X. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos Solitons Fractals 26 (2005) 1453-1458
    • (2005) Chaos Solitons Fractals , vol.26 , pp. 1453-1458
    • Ma, W.X.1
  • 13
    • 28044444778 scopus 로고    scopus 로고
    • Complexiton solutions to integrable equations
    • Ma W.X. Complexiton solutions to integrable equations. Nonlinear Anal. 63 (2005) e2461-e2471
    • (2005) Nonlinear Anal. , vol.63
    • Ma, W.X.1
  • 14
    • 0001681902 scopus 로고
    • Théorie de lintumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire
    • Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl. 17 (1872) 55-108
    • Boussinesq J. Théorie de lintumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72 (1871) 755-759 Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl. 17 (1872) 55-108
    • (1871) C. R. Acad. Sci. Paris , vol.72 , pp. 755-759
    • Boussinesq, J.1
  • 16
    • 0345863967 scopus 로고
    • Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics
    • Xu L., Auston D.H., and Hasegawa A. Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics. Phys. Rev. A 45 (1992) 3184-3193
    • (1992) Phys. Rev. A , vol.45 , pp. 3184-3193
    • Xu, L.1    Auston, D.H.2    Hasegawa, A.3
  • 18
    • 0000315236 scopus 로고
    • Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnetics
    • Translated from Zh. Eksper. Teoret. Fiz. 89 (1985) 258-270
    • Turitsyn S.K., and Fal'kovich G.E. Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnetics. Sov. Phys. JETP 62 (1985) 146-152 Translated from Zh. Eksper. Teoret. Fiz. 89 (1985) 258-270
    • (1985) Sov. Phys. JETP , vol.62 , pp. 146-152
    • Turitsyn, S.K.1    Fal'kovich, G.E.2
  • 19
    • 33947643498 scopus 로고    scopus 로고
    • Multiple scales asymptotics for atmospheric flows
    • Eur. Math. Soc., Zürich
    • Klein R., Mikusky E., and Owinoh A. Multiple scales asymptotics for atmospheric flows. European congress of mathematics (2005), Eur. Math. Soc., Zürich 201-220
    • (2005) European congress of mathematics , pp. 201-220
    • Klein, R.1    Mikusky, E.2    Owinoh, A.3
  • 20
    • 27144472702 scopus 로고    scopus 로고
    • On the role of optimal perturbations in the instability of monochromatic gravity waves
    • 094107
    • Achatz U. On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids 17 (2005) 27 094107
    • (2005) Phys. Fluids , vol.17 , pp. 27
    • Achatz, U.1
  • 22
    • 33947693144 scopus 로고    scopus 로고
    • Bounds for turbulent transport
    • IUTAM Symposium on geometry and statistics of turbulence (Hayama, 1999), Kluwer Acad. Publ., Dordrecht
    • Constantin P. Bounds for turbulent transport. IUTAM Symposium on geometry and statistics of turbulence (Hayama, 1999). Fluid Mech. Appl. vol. 59 (2001), Kluwer Acad. Publ., Dordrecht 23-31
    • (2001) Fluid Mech. Appl. , vol.59 , pp. 23-31
    • Constantin, P.1
  • 23
    • 0000060151 scopus 로고
    • On stocastization of one-dimensional chains of nonlinear oscillations
    • Translated from Zh. Eksper. Teoret. Fiz. 65 (1973) 219-225
    • Zakharov V.E. On stocastization of one-dimensional chains of nonlinear oscillations. Sov. Phys. JETP 38 (1974) 108-110 Translated from Zh. Eksper. Teoret. Fiz. 65 (1973) 219-225
    • (1974) Sov. Phys. JETP , vol.38 , pp. 108-110
    • Zakharov, V.E.1
  • 24
    • 36749121906 scopus 로고
    • Resonantly coupled nonlinear evolution equations
    • Ablowitz M.J., and Haberman R. Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16 (1975) 2301-2305
    • (1975) J. Math. Phys. , vol.16 , pp. 2301-2305
    • Ablowitz, M.J.1    Haberman, R.2
  • 25
    • 84980167430 scopus 로고
    • Boussinesq's equation on the circle
    • McKean H.P. Boussinesq's equation on the circle. Commun. Pure Appl. Math. 34 (1981) 599-691
    • (1981) Commun. Pure Appl. Math. , vol.34 , pp. 599-691
    • McKean, H.P.1
  • 26
    • 0037092882 scopus 로고    scopus 로고
    • The Boussinesq equation revisited
    • Bogdanov L.V., and Zakharov V.E. The Boussinesq equation revisited. Phys. D 165 (2002) 137-162
    • (2002) Phys. D , vol.165 , pp. 137-162
    • Bogdanov, L.V.1    Zakharov, V.E.2
  • 27
    • 0006071596 scopus 로고
    • Destruction of stationary solutions and collapse in the nonlinear string equation
    • Fal'kovich G.E., Spector M.D., and Turitsyn S.K. Destruction of stationary solutions and collapse in the nonlinear string equation. Phys. Lett. A 99 (1983) 271-274
    • (1983) Phys. Lett. A , vol.99 , pp. 271-274
    • Fal'kovich, G.E.1    Spector, M.D.2    Turitsyn, S.K.3
  • 28
    • 0002464716 scopus 로고
    • Direct method in soliton theory
    • Bullough R.K., and Caudrey P.J. (Eds), Springer-Verlag, Berlin
    • Hirota R. Direct method in soliton theory. In: Bullough R.K., and Caudrey P.J. (Eds). Solitons (1980), Springer-Verlag, Berlin 157-176
    • (1980) Solitons , pp. 157-176
    • Hirota, R.1
  • 29
    • 33947640521 scopus 로고    scopus 로고
    • Wronskian solutions of the Boussinesq equation - solitons, negatons, positons and complexitons
    • Li C.X., Ma W.X., Liu X.J., and Zeng Y.B. Wronskian solutions of the Boussinesq equation - solitons, negatons, positons and complexitons. Inverse Problems 23 (2007) 279-296
    • (2007) Inverse Problems , vol.23 , pp. 279-296
    • Li, C.X.1    Ma, W.X.2    Liu, X.J.3    Zeng, Y.B.4
  • 31
    • 0002902111 scopus 로고
    • A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian
    • Nimmo J.J.C., and Freeman N.C. A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95 (1983) 4-6
    • (1983) Phys. Lett. A , vol.95 , pp. 4-6
    • Nimmo, J.J.C.1    Freeman, N.C.2
  • 32
    • 18144382273 scopus 로고    scopus 로고
    • Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
    • Ma W.X., and You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Amer. Math. Soc. 357 (2005) 1753-1778
    • (2005) Trans. Amer. Math. Soc. , vol.357 , pp. 1753-1778
    • Ma, W.X.1    You, Y.2
  • 33
    • 0035372279 scopus 로고    scopus 로고
    • Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method
    • Wazwaz A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 12 (2001) 1549-1556
    • (2001) Chaos Solitons Fractals , vol.12 , pp. 1549-1556
    • Wazwaz, A.M.1
  • 34
    • 36849101831 scopus 로고
    • Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices
    • Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 14 (1973) 810-814
    • (1973) J. Math. Phys. , vol.14 , pp. 810-814
    • Hirota, R.1
  • 35
    • 84911743709 scopus 로고
    • Rational and ellipic solutions of the Korteweg-de Vries equation and a related many-body problem
    • Airault H., McKean H.P., and Moser J. Rational and ellipic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math. 30 (1977) 95-148
    • (1977) Commun. Pure Appl. Math. , vol.30 , pp. 95-148
    • Airault, H.1    McKean, H.P.2    Moser, J.3
  • 36
    • 58149212439 scopus 로고
    • The structure of the rational solutions to the Boussinesq equation
    • Galkin V.M., Pelinovsky D.E., and Stepanyants Yu.A. The structure of the rational solutions to the Boussinesq equation. Physica D 80 (1995) 246-255
    • (1995) Physica D , vol.80 , pp. 246-255
    • Galkin, V.M.1    Pelinovsky, D.E.2    Stepanyants, Yu.A.3
  • 37
    • 0004614546 scopus 로고    scopus 로고
    • Some classes of two-dimensional stationary vortex structures in an ideal fluid
    • Kaptsov O.V. Some classes of two-dimensional stationary vortex structures in an ideal fluid. J. Appl. Mech. Tech. Phys. 39 (1998) 389-392
    • (1998) J. Appl. Mech. Tech. Phys. , vol.39 , pp. 389-392
    • Kaptsov, O.V.1
  • 38
    • 0002554581 scopus 로고
    • The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types
    • Kalantarov V.K., and Ladyzhenskaya O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types. J. Sov. Math. 10 (1978) 53-70
    • (1978) J. Sov. Math. , vol.10 , pp. 53-70
    • Kalantarov, V.K.1    Ladyzhenskaya, O.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.