메뉴 건너뛰기




Volumn 55, Issue 9, 2012, Pages 1769-1778

A refined invariant subspace method and applications to evolution equations

Author keywords

evolution equation; generalized separation of variables; invariant subspace

Indexed keywords


EID: 84865560041     PISSN: 16747283     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11425-012-4408-9     Document Type: Article
Times cited : (103)

References (29)
  • 3
    • 12044249804 scopus 로고
    • Nonlinear interaction of travelling waves of nonintegrable equations
    • Fokas A S, Liu Q M. Nonlinear interaction of travelling waves of nonintegrable equations. Phys Rev Lett, 1994, 72: 3293-3296.
    • (1994) Phys Rev Lett , vol.72 , pp. 3293-3296
    • Fokas, A.S.1    Liu, Q.M.2
  • 4
    • 84971166861 scopus 로고
    • Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities
    • Galaktionov V A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc Roy Soc Endin Sect A, 1995, 125: 225-246.
    • (1995) Proc Roy Soc Endin Sect A , vol.125 , pp. 225-246
    • Galaktionov, V.A.1
  • 7
    • 0000587596 scopus 로고
    • Soliton structure of the Drinfel'd-Sokolov-Wilson equation
    • Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfel'd-Sokolov-Wilson equation. J Math Phys, 1986, 27: 1499-1505.
    • (1986) J Math Phys , vol.27 , pp. 1499-1505
    • Hirota, R.1    Grammaticos, B.2    Ramani, A.3
  • 8
    • 43949170135 scopus 로고
    • Exact polynomial solutions to some nonlinear diffusion equations
    • King J R. Exact polynomial solutions to some nonlinear diffusion equations. Physica D, 1993, 64: 35-65.
    • (1993) Physica D , vol.64 , pp. 35-65
    • King, J.R.1
  • 9
    • 33947640521 scopus 로고    scopus 로고
    • Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
    • Li C X, Ma W X, Liu X J, et al. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Problems, 2007, 23: 279-296.
    • (2007) Inverse Problems , vol.23 , pp. 279-296
    • Li, C.X.1    Ma, W.X.2    Liu, X.J.3
  • 10
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35-44.
    • (2002) Phys Lett A , vol.301 , pp. 35-44
    • Ma, W.X.1
  • 11
    • 33847223378 scopus 로고    scopus 로고
    • Integrability
    • A. Scott (Ed.), New York: Taylor & Francis
    • Ma W X. Integrability. In: Scott A, ed. Encyclopedia of Nonlinear Science. New York: Taylor & Francis, 2005, 250-253.
    • (2005) Encyclopedia of Nonlinear Science , pp. 250-253
    • Ma, W.X.1
  • 12
    • 28044444778 scopus 로고    scopus 로고
    • Complexiton solutions to integrable equations
    • Ma W X. Complexiton solutions to integrable equations. Nonlinear Anal, 2005, 63: e2461-e2471.
    • (2005) Nonlinear Anal , vol.63
    • Ma, W.X.1
  • 13
    • 79951711445 scopus 로고    scopus 로고
    • Wronskian solutions to integrable equations
    • Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dynam Syst, 2009, Supp: 506-515.
    • (2009) Discrete Contin Dynam Syst , Issue.SUPPL. , pp. 506-515
    • Ma, W.X.1
  • 14
    • 79959236580 scopus 로고    scopus 로고
    • Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation
    • Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl Math Comput, 2011, 217: 10016-10023.
    • (2011) Appl Math Comput , vol.217 , pp. 10016-10023
    • Ma, W.X.1    Abdeljabbar, A.2    Asaad, M.G.3
  • 15
    • 79651474215 scopus 로고    scopus 로고
    • Linear superposition principle applying to Hirota bilinear equations
    • Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959.
    • (2011) Comput Math Appl , vol.61 , pp. 950-959
    • Ma, W.X.1    Fan, E.G.2
  • 16
    • 78149402626 scopus 로고    scopus 로고
    • A multiple exp-function method for nonlinear differential equations and its application
    • Ma WX, Huang TW, Zhang Y. A multiple exp-function method for nonlinear differential equations and its application. Phys Scr, 2010, 82: 065003.
    • (2010) Phys Scr , vol.82 , pp. 065003
    • Ma, W.X.1    Huang, T.W.2    Zhang, Y.3
  • 17
    • 63449113626 scopus 로고    scopus 로고
    • A second Wronskian formulation of the Boussinesq equation
    • Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70: 4245-4258.
    • (2009) Nonlinear Anal , vol.70 , pp. 4245-4258
    • Ma, W.X.1    Li, C.X.2    He, J.S.3
  • 18
    • 18144382273 scopus 로고    scopus 로고
    • Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
    • Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753-1778.
    • (2005) Trans Amer Math Soc , vol.357 , pp. 1753-1778
    • Ma, W.X.1    You, Y.2
  • 19
    • 84862777329 scopus 로고    scopus 로고
    • Hirota bilinear equations with linear subspaces of solutions
    • Ma W X, Zhang Y, Tang Y N, et al. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput, 2012, 218: 7174-7183.
    • (2012) Appl Math Comput , vol.218 , pp. 7174-7183
    • Ma, W.X.1    Zhang, Y.2    Tang, Y.N.3
  • 21
    • 0001290663 scopus 로고    scopus 로고
    • Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source
    • Qu C Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud Appl Math, 1997, 99: 107-136.
    • (1997) Stud Appl Math , vol.99 , pp. 107-136
    • Qu, C.Z.1
  • 22
    • 34948834672 scopus 로고    scopus 로고
    • Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations
    • Qu C Z, Ji J N, Wang L Z. Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud Appl Math, 2007, 119: 355-391.
    • (2007) Stud Appl Math , vol.119 , pp. 355-391
    • Qu, C.Z.1    Ji, J.N.2    Wang, L.Z.3
  • 23
    • 72449147395 scopus 로고    scopus 로고
    • Classification of coupled systems with two-component nonlinear diffusion equations by the invrainat subspace method
    • Qu C Z, Zhu C R. Classification of coupled systems with two-component nonlinear diffusion equations by the invrainat subspace method. J Phys A Math Theor, 2009, 42: 475201.
    • (2009) J Phys A Math Theor , vol.42 , pp. 475201
    • Qu, C.Z.1    Zhu, C.R.2
  • 24
    • 84857945557 scopus 로고    scopus 로고
    • Maximal dimension of invariant subspaces to systems of nonlinear evolution equations
    • Shen S F, Qu C Z, Jin Y Y, et al. Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chin Ann Math B, 2012, 33: 161-178.
    • (2012) Chin Ann Math B , vol.33 , pp. 161-178
    • Shen, S.F.1    Qu, C.Z.2    Jin, Y.Y.3
  • 25
    • 0000733592 scopus 로고
    • Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations
    • Svirshchevskii S R. Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. Phys Lett A, 1995, 199: 344-348.
    • (1995) Phys Lett A , vol.199 , pp. 344-348
    • Svirshchevskii, S.R.1
  • 26
    • 0242665693 scopus 로고    scopus 로고
    • Ordinary differential operators possessing invaraint subspaces of polynomial type
    • Svirshchevskii S R. Ordinary differential operators possessing invaraint subspaces of polynomial type. Commun Nonlinear Sci Numer Simul, 2004, 9: 105-115.
    • (2004) Commun Nonlinear Sci Numer Simul , vol.9 , pp. 105-115
    • Svirshchevskii, S.R.1
  • 27
    • 0007128781 scopus 로고
    • A method of finite-diemnsional rings for solving nonlinear equations of mathematical physics
    • T. P. Ivanova (Ed.), Saratov: Saratov University
    • Titov S S. A method of finite-diemnsional rings for solving nonlinear equations of mathematical physics. In: Ivanova T P, ed. Aerodynamics. Saratov: Saratov University, 1988, 104-109.
    • (1988) Aerodynamics , pp. 104-109
    • Titov, S.S.1
  • 28
    • 21844486280 scopus 로고
    • Conditional Lie-Bäcklund symmetry and reductions of evolution equations
    • Zhdanov R Z. Conditional Lie-Bäcklund symmetry and reductions of evolution equations. J Phys A Math Gen, 1995, 28: 3841-3850.
    • (1995) J Phys A Math Gen , vol.28 , pp. 3841-3850
    • Zhdanov, R.Z.1
  • 29
    • 79955458443 scopus 로고    scopus 로고
    • Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators
    • Zhu C R, Qu C Z. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J Math Phys, 2011, 52: 043507.
    • (2011) J Math Phys , vol.52 , pp. 043507
    • Zhu, C.R.1    Qu, C.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.