-
3
-
-
12044249804
-
Nonlinear interaction of travelling waves of nonintegrable equations
-
Fokas A S, Liu Q M. Nonlinear interaction of travelling waves of nonintegrable equations. Phys Rev Lett, 1994, 72: 3293-3296.
-
(1994)
Phys Rev Lett
, vol.72
, pp. 3293-3296
-
-
Fokas, A.S.1
Liu, Q.M.2
-
4
-
-
84971166861
-
Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities
-
Galaktionov V A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc Roy Soc Endin Sect A, 1995, 125: 225-246.
-
(1995)
Proc Roy Soc Endin Sect A
, vol.125
, pp. 225-246
-
-
Galaktionov, V.A.1
-
7
-
-
0000587596
-
Soliton structure of the Drinfel'd-Sokolov-Wilson equation
-
Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfel'd-Sokolov-Wilson equation. J Math Phys, 1986, 27: 1499-1505.
-
(1986)
J Math Phys
, vol.27
, pp. 1499-1505
-
-
Hirota, R.1
Grammaticos, B.2
Ramani, A.3
-
8
-
-
43949170135
-
Exact polynomial solutions to some nonlinear diffusion equations
-
King J R. Exact polynomial solutions to some nonlinear diffusion equations. Physica D, 1993, 64: 35-65.
-
(1993)
Physica D
, vol.64
, pp. 35-65
-
-
King, J.R.1
-
9
-
-
33947640521
-
Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
-
Li C X, Ma W X, Liu X J, et al. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Problems, 2007, 23: 279-296.
-
(2007)
Inverse Problems
, vol.23
, pp. 279-296
-
-
Li, C.X.1
Ma, W.X.2
Liu, X.J.3
-
10
-
-
0037136277
-
Complexiton solutions to the Korteweg-de Vries equation
-
Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35-44.
-
(2002)
Phys Lett A
, vol.301
, pp. 35-44
-
-
Ma, W.X.1
-
11
-
-
33847223378
-
Integrability
-
A. Scott (Ed.), New York: Taylor & Francis
-
Ma W X. Integrability. In: Scott A, ed. Encyclopedia of Nonlinear Science. New York: Taylor & Francis, 2005, 250-253.
-
(2005)
Encyclopedia of Nonlinear Science
, pp. 250-253
-
-
Ma, W.X.1
-
12
-
-
28044444778
-
Complexiton solutions to integrable equations
-
Ma W X. Complexiton solutions to integrable equations. Nonlinear Anal, 2005, 63: e2461-e2471.
-
(2005)
Nonlinear Anal
, vol.63
-
-
Ma, W.X.1
-
13
-
-
79951711445
-
Wronskian solutions to integrable equations
-
Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dynam Syst, 2009, Supp: 506-515.
-
(2009)
Discrete Contin Dynam Syst
, Issue.SUPPL.
, pp. 506-515
-
-
Ma, W.X.1
-
14
-
-
79959236580
-
Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation
-
Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl Math Comput, 2011, 217: 10016-10023.
-
(2011)
Appl Math Comput
, vol.217
, pp. 10016-10023
-
-
Ma, W.X.1
Abdeljabbar, A.2
Asaad, M.G.3
-
15
-
-
79651474215
-
Linear superposition principle applying to Hirota bilinear equations
-
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959.
-
(2011)
Comput Math Appl
, vol.61
, pp. 950-959
-
-
Ma, W.X.1
Fan, E.G.2
-
16
-
-
78149402626
-
A multiple exp-function method for nonlinear differential equations and its application
-
Ma WX, Huang TW, Zhang Y. A multiple exp-function method for nonlinear differential equations and its application. Phys Scr, 2010, 82: 065003.
-
(2010)
Phys Scr
, vol.82
, pp. 065003
-
-
Ma, W.X.1
Huang, T.W.2
Zhang, Y.3
-
17
-
-
63449113626
-
A second Wronskian formulation of the Boussinesq equation
-
Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70: 4245-4258.
-
(2009)
Nonlinear Anal
, vol.70
, pp. 4245-4258
-
-
Ma, W.X.1
Li, C.X.2
He, J.S.3
-
18
-
-
18144382273
-
Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
-
Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753-1778.
-
(2005)
Trans Amer Math Soc
, vol.357
, pp. 1753-1778
-
-
Ma, W.X.1
You, Y.2
-
19
-
-
84862777329
-
Hirota bilinear equations with linear subspaces of solutions
-
Ma W X, Zhang Y, Tang Y N, et al. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput, 2012, 218: 7174-7183.
-
(2012)
Appl Math Comput
, vol.218
, pp. 7174-7183
-
-
Ma, W.X.1
Zhang, Y.2
Tang, Y.N.3
-
21
-
-
0001290663
-
Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source
-
Qu C Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud Appl Math, 1997, 99: 107-136.
-
(1997)
Stud Appl Math
, vol.99
, pp. 107-136
-
-
Qu, C.Z.1
-
22
-
-
34948834672
-
Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations
-
Qu C Z, Ji J N, Wang L Z. Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud Appl Math, 2007, 119: 355-391.
-
(2007)
Stud Appl Math
, vol.119
, pp. 355-391
-
-
Qu, C.Z.1
Ji, J.N.2
Wang, L.Z.3
-
23
-
-
72449147395
-
Classification of coupled systems with two-component nonlinear diffusion equations by the invrainat subspace method
-
Qu C Z, Zhu C R. Classification of coupled systems with two-component nonlinear diffusion equations by the invrainat subspace method. J Phys A Math Theor, 2009, 42: 475201.
-
(2009)
J Phys A Math Theor
, vol.42
, pp. 475201
-
-
Qu, C.Z.1
Zhu, C.R.2
-
24
-
-
84857945557
-
Maximal dimension of invariant subspaces to systems of nonlinear evolution equations
-
Shen S F, Qu C Z, Jin Y Y, et al. Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chin Ann Math B, 2012, 33: 161-178.
-
(2012)
Chin Ann Math B
, vol.33
, pp. 161-178
-
-
Shen, S.F.1
Qu, C.Z.2
Jin, Y.Y.3
-
25
-
-
0000733592
-
Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations
-
Svirshchevskii S R. Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. Phys Lett A, 1995, 199: 344-348.
-
(1995)
Phys Lett A
, vol.199
, pp. 344-348
-
-
Svirshchevskii, S.R.1
-
26
-
-
0242665693
-
Ordinary differential operators possessing invaraint subspaces of polynomial type
-
Svirshchevskii S R. Ordinary differential operators possessing invaraint subspaces of polynomial type. Commun Nonlinear Sci Numer Simul, 2004, 9: 105-115.
-
(2004)
Commun Nonlinear Sci Numer Simul
, vol.9
, pp. 105-115
-
-
Svirshchevskii, S.R.1
-
27
-
-
0007128781
-
A method of finite-diemnsional rings for solving nonlinear equations of mathematical physics
-
T. P. Ivanova (Ed.), Saratov: Saratov University
-
Titov S S. A method of finite-diemnsional rings for solving nonlinear equations of mathematical physics. In: Ivanova T P, ed. Aerodynamics. Saratov: Saratov University, 1988, 104-109.
-
(1988)
Aerodynamics
, pp. 104-109
-
-
Titov, S.S.1
-
28
-
-
21844486280
-
Conditional Lie-Bäcklund symmetry and reductions of evolution equations
-
Zhdanov R Z. Conditional Lie-Bäcklund symmetry and reductions of evolution equations. J Phys A Math Gen, 1995, 28: 3841-3850.
-
(1995)
J Phys A Math Gen
, vol.28
, pp. 3841-3850
-
-
Zhdanov, R.Z.1
-
29
-
-
79955458443
-
Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators
-
Zhu C R, Qu C Z. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J Math Phys, 2011, 52: 043507.
-
(2011)
J Math Phys
, vol.52
, pp. 043507
-
-
Zhu, C.R.1
Qu, C.Z.2
|