-
2
-
-
78650257685
-
Hirota's bilinear method and soliton solutions
-
J. Hietarinta Hirota's bilinear method and soliton solutions Phys. AUC 15 part 1 2005 31 37
-
(2005)
Phys. AUC
, vol.15
, Issue.PART 1
, pp. 31-37
-
-
Hietarinta, J.1
-
3
-
-
78149402626
-
A multiple exp-function method for nonlinear differential equations and its application
-
W.X. Ma, T.W. Huang, and Y. Zhang A multiple exp-function method for nonlinear differential equations and its application Phys. Scr. 82 2010 065003
-
(2010)
Phys. Scr.
, vol.82
, pp. 065003
-
-
Ma, W.X.1
Huang, T.W.2
Zhang, Y.3
-
4
-
-
79651474215
-
Linear superposition principle applying to Hirota bilinear equations
-
W.X. Ma, and E.G. Fan Linear superposition principle applying to Hirota bilinear equations Comput. Math. Appl. 61 2011 950 959
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 950-959
-
-
Ma, W.X.1
Fan, E.G.2
-
5
-
-
77952765086
-
A Wronskian representation of N-soliton solutions of nonlinear evolution equations
-
J. Satsuma A Wronskian representation of N-soliton solutions of nonlinear evolution equations J. Phys. Soc. Jpn. 46 1979 359 360
-
(1979)
J. Phys. Soc. Jpn.
, vol.46
, pp. 359-360
-
-
Satsuma, J.1
-
6
-
-
0038785055
-
Positon-positon and soliton-positon collisions: KdV case
-
V.B. Matveev Positon-positon and soliton-positon collisions: KdV case Phys. Lett. A 166 1992 200 212
-
(1992)
Phys. Lett. A
, vol.166
, pp. 200-212
-
-
Matveev, V.B.1
-
7
-
-
0037136277
-
Complexiton solutions to the Korteweg-de Vries equation
-
W.X. Ma Complexiton solutions to the Korteweg-de Vries equation Phys. Lett. A 301 2002 35 44
-
(2002)
Phys. Lett. A
, vol.301
, pp. 35-44
-
-
Ma, W.X.1
-
8
-
-
4544353887
-
Complexiton solutions of the Toda lattice equation
-
W.X. Ma, and K. Maruno Complexiton solutions of the Toda lattice equation Physica A 343 2004 219 237
-
(2004)
Physica A
, vol.343
, pp. 219-237
-
-
Ma, W.X.1
Maruno, K.2
-
9
-
-
0842290212
-
Soliton, positon and negaton solutions to a Schroedinger self-consistent source equation
-
W.X. Ma Soliton, positon and negaton solutions to a Schroedinger self-consistent source equation J. Phys. Soc. Jpn. 72 2003 3017 3019
-
(2003)
J. Phys. Soc. Jpn.
, vol.72
, pp. 3017-3019
-
-
Ma, W.X.1
-
10
-
-
20444439142
-
Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
-
W.X. Ma Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources Chaos, Solitons Fractals 26 2005 1453 1458
-
(2005)
Chaos, Solitons Fractals
, vol.26
, pp. 1453-1458
-
-
Ma, W.X.1
-
11
-
-
0002039001
-
A bilinear N-soliton formula for the KP equation
-
A. Nakamura A bilinear N-soliton formula for the KP equation J. Phys. Soc. Jpn. 58 1989 412 422
-
(1989)
J. Phys. Soc. Jpn.
, vol.58
, pp. 412-422
-
-
Nakamura, A.1
-
12
-
-
0000266051
-
Soliton solutions to the BKP equations - I. The Pfaffian technique
-
R. Hirota Soliton solutions to the BKP equations - I. The Pfaffian technique J. Phys. Soc. Jpn. 58 1989 2285 2296
-
(1989)
J. Phys. Soc. Jpn.
, vol.58
, pp. 2285-2296
-
-
Hirota, R.1
-
13
-
-
79959200977
-
Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations
-
W.X. Ma, A. Pekcan, Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations, Zeitschrift fr Naturforschung A, in press.
-
Zeitschrift Fr Naturforschung A
-
-
Ma, W.X.1
Pekcan, A.2
-
14
-
-
41649110425
-
Decomposition of the generalized KP, cKP and mKP and their exact solutions
-
F.C. You, T.C. Xia, and D.Y. Chen Decomposition of the generalized KP, cKP and mKP and their exact solutions Phys. Lett. A 372 2008 3184 3194
-
(2008)
Phys. Lett. A
, vol.372
, pp. 3184-3194
-
-
You, F.C.1
Xia, T.C.2
Chen, D.Y.3
-
15
-
-
0001247353
-
A new form of Bäcklund transformations and its relation to the inverse scattering problem
-
R. Hirota A new form of Bäcklund transformations and its relation to the inverse scattering problem Progr. Theor. Phys. 52 1974 1498 1512
-
(1974)
Progr. Theor. Phys.
, vol.52
, pp. 1498-1512
-
-
Hirota, R.1
-
16
-
-
34548541360
-
N-soliton solution and its Wronskian form of a (3 + 1)-dimensional nonlinear evolution equation
-
X.G. Geng, and Y.L. Ma N-soliton solution and its Wronskian form of a (3 + 1)-dimensional nonlinear evolution equation Phys. Lett. A 369 2007 285 289
-
(2007)
Phys. Lett. A
, vol.369
, pp. 285-289
-
-
Geng, X.G.1
Ma, Y.L.2
-
17
-
-
70450235522
-
Grammian determinant solution and Pfaffianization for a (3 + 1)-dimensional soliton equation
-
J.P. Wu, and X.G. Geng Grammian determinant solution and Pfaffianization for a (3 + 1)-dimensional soliton equation Commun. Theor. Phys. 52 2009 791 794
-
(2009)
Commun. Theor. Phys.
, vol.52
, pp. 791-794
-
-
Wu, J.P.1
Geng, X.G.2
-
18
-
-
18144382273
-
Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
-
DOI 10.1090/S0002-9947-04-03726-2, PII S0002994704037262
-
W.X. Ma, and Y. You Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions Trans. Amer. Math. Soc. 357 2005 1753 1778 (Pubitemid 40622693)
-
(2005)
Transactions of the American Mathematical Society
, vol.357
, Issue.5
, pp. 1753-1778
-
-
Ma, W.-X.1
You, Y.2
-
19
-
-
63449113626
-
A second Wronskian formulation of the Boussinesq equation
-
W.X. Ma, C.X. Li, and J.S. He A second Wronskian formulation of the Boussinesq equation Nonlinear Anal. 70 2009 4245 4258
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 4245-4258
-
-
Ma, W.X.1
Li, C.X.2
He, J.S.3
-
20
-
-
33947640521
-
Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
-
C.X. Li, W.X. Ma, X.J. Liu, and Y.B. Zeng Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons Inverse Probl. 23 2007 279 296
-
(2007)
Inverse Probl.
, vol.23
, pp. 279-296
-
-
Li, C.X.1
Ma, W.X.2
Liu, X.J.3
Zeng, Y.B.4
-
21
-
-
50949109194
-
An application of the Casoratian technique to the 2D Toda lattice equation
-
W.X. Ma An application of the Casoratian technique to the 2D Toda lattice equation Mod. Phys. Lett. B 22 2008 1815 1825
-
(2008)
Mod. Phys. Lett. B
, vol.22
, pp. 1815-1825
-
-
Ma, W.X.1
-
22
-
-
70349172982
-
Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation
-
G.F. Yu, and X.B. Hu Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation Math. Comput. Simul. 80 2009 184 191
-
(2009)
Math. Comput. Simul.
, vol.80
, pp. 184-191
-
-
Yu, G.F.1
Hu, X.B.2
|