메뉴 건너뛰기




Volumn 217, Issue 24, 2011, Pages 10016-10023

Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation

Author keywords

Grammian solution; Hirota bilinear form; Wronskian solution

Indexed keywords

BILINEAR FORM; FREE PARAMETERS; GENERATING FUNCTIONS; GRAMMIAN SOLUTION; KP EQUATION; MATRIX; PARTICULAR SOLUTION; WRONSKIAN SOLUTION;

EID: 79959236580     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.04.077     Document Type: Article
Times cited : (126)

References (22)
  • 2
    • 78650257685 scopus 로고    scopus 로고
    • Hirota's bilinear method and soliton solutions
    • J. Hietarinta Hirota's bilinear method and soliton solutions Phys. AUC 15 part 1 2005 31 37
    • (2005) Phys. AUC , vol.15 , Issue.PART 1 , pp. 31-37
    • Hietarinta, J.1
  • 3
    • 78149402626 scopus 로고    scopus 로고
    • A multiple exp-function method for nonlinear differential equations and its application
    • W.X. Ma, T.W. Huang, and Y. Zhang A multiple exp-function method for nonlinear differential equations and its application Phys. Scr. 82 2010 065003
    • (2010) Phys. Scr. , vol.82 , pp. 065003
    • Ma, W.X.1    Huang, T.W.2    Zhang, Y.3
  • 4
    • 79651474215 scopus 로고    scopus 로고
    • Linear superposition principle applying to Hirota bilinear equations
    • W.X. Ma, and E.G. Fan Linear superposition principle applying to Hirota bilinear equations Comput. Math. Appl. 61 2011 950 959
    • (2011) Comput. Math. Appl. , vol.61 , pp. 950-959
    • Ma, W.X.1    Fan, E.G.2
  • 5
    • 77952765086 scopus 로고
    • A Wronskian representation of N-soliton solutions of nonlinear evolution equations
    • J. Satsuma A Wronskian representation of N-soliton solutions of nonlinear evolution equations J. Phys. Soc. Jpn. 46 1979 359 360
    • (1979) J. Phys. Soc. Jpn. , vol.46 , pp. 359-360
    • Satsuma, J.1
  • 6
    • 0038785055 scopus 로고
    • Positon-positon and soliton-positon collisions: KdV case
    • V.B. Matveev Positon-positon and soliton-positon collisions: KdV case Phys. Lett. A 166 1992 200 212
    • (1992) Phys. Lett. A , vol.166 , pp. 200-212
    • Matveev, V.B.1
  • 7
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • W.X. Ma Complexiton solutions to the Korteweg-de Vries equation Phys. Lett. A 301 2002 35 44
    • (2002) Phys. Lett. A , vol.301 , pp. 35-44
    • Ma, W.X.1
  • 8
    • 4544353887 scopus 로고    scopus 로고
    • Complexiton solutions of the Toda lattice equation
    • W.X. Ma, and K. Maruno Complexiton solutions of the Toda lattice equation Physica A 343 2004 219 237
    • (2004) Physica A , vol.343 , pp. 219-237
    • Ma, W.X.1    Maruno, K.2
  • 9
    • 0842290212 scopus 로고    scopus 로고
    • Soliton, positon and negaton solutions to a Schroedinger self-consistent source equation
    • W.X. Ma Soliton, positon and negaton solutions to a Schroedinger self-consistent source equation J. Phys. Soc. Jpn. 72 2003 3017 3019
    • (2003) J. Phys. Soc. Jpn. , vol.72 , pp. 3017-3019
    • Ma, W.X.1
  • 10
    • 20444439142 scopus 로고    scopus 로고
    • Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
    • W.X. Ma Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources Chaos, Solitons Fractals 26 2005 1453 1458
    • (2005) Chaos, Solitons Fractals , vol.26 , pp. 1453-1458
    • Ma, W.X.1
  • 11
    • 0002039001 scopus 로고
    • A bilinear N-soliton formula for the KP equation
    • A. Nakamura A bilinear N-soliton formula for the KP equation J. Phys. Soc. Jpn. 58 1989 412 422
    • (1989) J. Phys. Soc. Jpn. , vol.58 , pp. 412-422
    • Nakamura, A.1
  • 12
    • 0000266051 scopus 로고
    • Soliton solutions to the BKP equations - I. The Pfaffian technique
    • R. Hirota Soliton solutions to the BKP equations - I. The Pfaffian technique J. Phys. Soc. Jpn. 58 1989 2285 2296
    • (1989) J. Phys. Soc. Jpn. , vol.58 , pp. 2285-2296
    • Hirota, R.1
  • 13
    • 79959200977 scopus 로고    scopus 로고
    • Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations
    • W.X. Ma, A. Pekcan, Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations, Zeitschrift fr Naturforschung A, in press.
    • Zeitschrift Fr Naturforschung A
    • Ma, W.X.1    Pekcan, A.2
  • 14
    • 41649110425 scopus 로고    scopus 로고
    • Decomposition of the generalized KP, cKP and mKP and their exact solutions
    • F.C. You, T.C. Xia, and D.Y. Chen Decomposition of the generalized KP, cKP and mKP and their exact solutions Phys. Lett. A 372 2008 3184 3194
    • (2008) Phys. Lett. A , vol.372 , pp. 3184-3194
    • You, F.C.1    Xia, T.C.2    Chen, D.Y.3
  • 15
    • 0001247353 scopus 로고
    • A new form of Bäcklund transformations and its relation to the inverse scattering problem
    • R. Hirota A new form of Bäcklund transformations and its relation to the inverse scattering problem Progr. Theor. Phys. 52 1974 1498 1512
    • (1974) Progr. Theor. Phys. , vol.52 , pp. 1498-1512
    • Hirota, R.1
  • 16
    • 34548541360 scopus 로고    scopus 로고
    • N-soliton solution and its Wronskian form of a (3 + 1)-dimensional nonlinear evolution equation
    • X.G. Geng, and Y.L. Ma N-soliton solution and its Wronskian form of a (3 + 1)-dimensional nonlinear evolution equation Phys. Lett. A 369 2007 285 289
    • (2007) Phys. Lett. A , vol.369 , pp. 285-289
    • Geng, X.G.1    Ma, Y.L.2
  • 17
    • 70450235522 scopus 로고    scopus 로고
    • Grammian determinant solution and Pfaffianization for a (3 + 1)-dimensional soliton equation
    • J.P. Wu, and X.G. Geng Grammian determinant solution and Pfaffianization for a (3 + 1)-dimensional soliton equation Commun. Theor. Phys. 52 2009 791 794
    • (2009) Commun. Theor. Phys. , vol.52 , pp. 791-794
    • Wu, J.P.1    Geng, X.G.2
  • 18
    • 18144382273 scopus 로고    scopus 로고
    • Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
    • DOI 10.1090/S0002-9947-04-03726-2, PII S0002994704037262
    • W.X. Ma, and Y. You Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions Trans. Amer. Math. Soc. 357 2005 1753 1778 (Pubitemid 40622693)
    • (2005) Transactions of the American Mathematical Society , vol.357 , Issue.5 , pp. 1753-1778
    • Ma, W.-X.1    You, Y.2
  • 19
    • 63449113626 scopus 로고    scopus 로고
    • A second Wronskian formulation of the Boussinesq equation
    • W.X. Ma, C.X. Li, and J.S. He A second Wronskian formulation of the Boussinesq equation Nonlinear Anal. 70 2009 4245 4258
    • (2009) Nonlinear Anal. , vol.70 , pp. 4245-4258
    • Ma, W.X.1    Li, C.X.2    He, J.S.3
  • 20
    • 33947640521 scopus 로고    scopus 로고
    • Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
    • C.X. Li, W.X. Ma, X.J. Liu, and Y.B. Zeng Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons Inverse Probl. 23 2007 279 296
    • (2007) Inverse Probl. , vol.23 , pp. 279-296
    • Li, C.X.1    Ma, W.X.2    Liu, X.J.3    Zeng, Y.B.4
  • 21
    • 50949109194 scopus 로고    scopus 로고
    • An application of the Casoratian technique to the 2D Toda lattice equation
    • W.X. Ma An application of the Casoratian technique to the 2D Toda lattice equation Mod. Phys. Lett. B 22 2008 1815 1825
    • (2008) Mod. Phys. Lett. B , vol.22 , pp. 1815-1825
    • Ma, W.X.1
  • 22
    • 70349172982 scopus 로고    scopus 로고
    • Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation
    • G.F. Yu, and X.B. Hu Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation Math. Comput. Simul. 80 2009 184 191
    • (2009) Math. Comput. Simul. , vol.80 , pp. 184-191
    • Yu, G.F.1    Hu, X.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.