-
1
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
V. Namias The fractional order Fourier transform and its application to quantum mechanics J. Inst. Math. Appl. 25 1980 241 265
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
2
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
L.B. Almeida The fractional Fourier transform and time-frequency representations IEEE Trans. Signal Process. 42 1994 3084 3091
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
4
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domain and their relation to chirp and wavelet transforms
-
H.M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural Convolution, filtering, and multiplexing in fractional Fourier domain and their relation to chirp and wavelet transforms J. Opt. Soc. Am. A 11 1994 547 559
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
6
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
A.I. Zayed A product and convolution theorems for the fractional Fourier transform IEEE Signal Process. Lett. 4 1998 101 103 (Pubitemid 128556806)
-
(1998)
IEEE Signal Processing Letters
, vol.5
, Issue.4
, pp. 101-103
-
-
Zayed, A.I.1
-
7
-
-
0141973669
-
Image eneryption and the fractional Foureir transform
-
B.M. Hennelly, and J.T. Sheridan Image eneryption and the fractional Foureir transform Optik 114 2003 251 265
-
(2003)
Optik
, vol.114
, pp. 251-265
-
-
Hennelly, B.M.1
Sheridan, J.T.2
-
8
-
-
32044452690
-
Application of fractional Fourier transform on spatial filtering
-
DOI 10.1016/j.ijleo.2005.08.003, PII S0030402605002196
-
L. Chen, and D. Zhao Application of fractional Fourier transform on spatial filtering Optik 117 2006 107 110 (Pubitemid 43199963)
-
(2006)
Optik
, vol.117
, Issue.3
, pp. 107-110
-
-
Chen, L.1
Zhao, D.2
-
9
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
D.Y. Wei, Q.W. Ran, Y.M. Li, J. Ma, and L.Y. Tan A convolution and product theorem for the linear canonical transform IEEE Signal Process. Lett. 16 2009 853 856
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, pp. 853-856
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
Ma, J.4
Tan, L.Y.5
-
10
-
-
67649322238
-
Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform
-
Q.W. Ran, H.Y. Zhang, J. Zhang, L.Y. Tan, and J. Ma Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform Optics Lett. 34 2009 1729 1731
-
(2009)
Optics Lett.
, vol.34
, pp. 1729-1731
-
-
Ran, Q.W.1
Zhang, H.Y.2
Zhang, J.3
Tan, L.Y.4
Ma, J.5
-
11
-
-
77957908690
-
Single phase encoding method based on the fractional Fourier transform
-
Z. Liu, J. Dai, X. Sun, and S. Liu Single phase encoding method based on the fractional Fourier transform Optik 121 2010 1748 1751
-
(2010)
Optik
, vol.121
, pp. 1748-1751
-
-
Liu, Z.1
Dai, J.2
Sun, X.3
Liu, S.4
-
12
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
X.G. Xia On bandlimited signals with fractional Fourier transform IEEE Signal Process. Lett. 3 1996 72 74
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 72-74
-
-
Xia, X.G.1
-
13
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transforms
-
PII S1070990896090347
-
A.I. Zayed On the relationship between the Fourier and fractional Fourier transforms IEEE Signal Process. Lett. 3 1996 310 311 (Pubitemid 126527116)
-
(1996)
IEEE Signal Processing Letters
, vol.3
, Issue.12
, pp. 310-311
-
-
Zayed, A.I.1
-
14
-
-
0033345657
-
Unified fractional Fourier transform and sampling theorem
-
DOI 10.1109/78.806089
-
T. Erseghe, P. Kraniauskas, and G. Cariolaro Unified fractional Fourier transform and sampling theorem IEEE Trans. Signal Process. 47 1999 3419 3423 (Pubitemid 30531537)
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, Issue.12
, pp. 3419-3423
-
-
Erseghe, T.1
-
15
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
C. Candan, and H.M. Ozaktas Sampling and series expansion theorems for fractional Fourier and other transforms Signal Process. 83 2003 2455 2457
-
(2003)
Signal Process.
, vol.83
, pp. 2455-2457
-
-
Candan, C.1
Ozaktas, H.M.2
-
16
-
-
33750119845
-
Sampling theorem for fractional bandlimited signals: A self-contained proof. application to digital holography
-
DOI 10.1109/LSP.2006.879470
-
R. Torres, P. Pellat-Finet, and Y. Torres Sampling theorem for fractional bandlimited signals a self-contained proof. application to digital holography IEEE Signal Process. Lett. 13 2006 676 679 (Pubitemid 44593661)
-
(2006)
IEEE Signal Processing Letters
, vol.13
, Issue.11
, pp. 676-679
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
17
-
-
77954564062
-
Sampling of bandlimited signals in fractional Fourier transform domain
-
Q.W. Ran, H. Zhao, L.Y. Tan, and J. Ma Sampling of bandlimited signals in fractional Fourier transform domain Circuits syst. Signal Proces. 29 2010 459 467
-
(2010)
Circuits Syst. Signal Proces.
, vol.29
, pp. 459-467
-
-
Ran, Q.W.1
Zhao, H.2
Tan, L.Y.3
Ma, J.4
-
18
-
-
77952173338
-
Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform
-
D.Y. Wei, Q.W. Ran, and Y.M. Li Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform IEEE Signal Process. Lett. 17 2010 595 598
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, pp. 595-598
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
19
-
-
84911837213
-
Communication in the presence of noise
-
C.E. Shannon Communication in the presence of noise Proc. IRE 37 1949 10 21
-
(1949)
Proc. IRE
, vol.37
, pp. 10-21
-
-
Shannon, C.E.1
-
20
-
-
0009624216
-
A note on the sampling principle for continuous signals
-
A.V. Balakrishnan A note on the sampling principle for continuous signals IRE Trans. Inform. Theory IT-3 1957 143 146
-
(1957)
IRE Trans. Inform. Theory
, vol.3 IT-
, pp. 143-146
-
-
Balakrishnan, A.V.1
-
21
-
-
0033339817
-
Fractional Fourier series expansion for finite signals and dual extension to discrete time fractional Fourier transform
-
S.C. Pei, M.H. Yeh, and T.L. Luo Fractional Fourier series expansion for finite signals and dual extension to discrete time fractional Fourier transform IEEE Trans. Signal Process. 47 1999 2883 2888
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, pp. 2883-2888
-
-
Pei, S.C.1
Yeh, M.H.2
Luo, T.L.3
|