메뉴 건너뛰기




Volumn , Issue , 2012, Pages 674-689

Accuracy improvements for multi-criteria recommender systems

Author keywords

machine learning; multi criteria ratings; recommender systems

Indexed keywords

ACCURACY IMPROVEMENT; AUTOMATIC ADJUSTMENT; COLLABORATIVE FILTERING; COMBINATION WEIGHTS; DATA SETS; E-COMMERCE SITES; EXPERIMENTAL ANALYSIS; MATRIX FACTORIZATIONS; MULTI-CRITERIA; PREDICTIVE ACCURACY; PRODUCT CATALOGS; PRODUCT RECOMMENDATION; REGRESSION MODEL; SUPPORT VECTOR REGRESSION (SVR); USER COMMUNITIES;

EID: 84863534047     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2229012.2229065     Document Type: Conference Paper
Times cited : (128)

References (32)
  • 1
    • 34250016241 scopus 로고    scopus 로고
    • New recommendation techniques for multicriteria rating systems
    • ADOMAVICIUS, G. AND KWON, Y. 2007. New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems 22, 48-55.
    • (2007) IEEE Intelligent Systems , vol.22 , pp. 48-55
    • Adomavicius, G.1    Kwon, Y.2
  • 2
    • 79961131041 scopus 로고    scopus 로고
    • Multi-criteria recommender systems
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. Springer US
    • ADOMAVICIUS, G., MANOUSELIS, N., AND KWON, Y. 2011. Multi-criteria recommender systems. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. Springer US, 769-803.
    • (2011) Recommender Systems Handbook , pp. 769-803
    • Adomavicius, G.1    Manouselis, N.2    Kwon, Y.3
  • 3
    • 0036890577 scopus 로고    scopus 로고
    • Interactive critiquing forcatalog navigation in e-commerce
    • BURKE, R. 2002. Interactive critiquing forcatalog navigation in e-commerce. Artificial Intelligence Review 18, 3-4, 245-267.
    • (2002) Artificial Intelligence Review , vol.18 , Issue.3-4 , pp. 245-267
    • Burke, R.1
  • 11
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • HOFMANN, T. 2004. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems 22, 89-115.
    • (2004) ACM Transactions on Information Systems , vol.22 , pp. 89-115
    • Hofmann, T.1
  • 16
    • 77956725339 scopus 로고    scopus 로고
    • Constraint-based recommendation in tourism: A multiperspective case study
    • JANNACH, D., ZANKER, M., AND FUCHS, M. 2009. Constraint-based recommendation in tourism: A multiperspective case study. Journal of Information Technology and Tourism 11, 2, 139-155.
    • (2009) Journal of Information Technology and Tourism , vol.11 , Issue.2 , pp. 139-155
    • Jannach, D.1    Zanker, M.2    Fuchs, M.3
  • 17
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • KOREN, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data 4, 1-24.
    • (2010) ACM Transactions on Knowledge Discovery from Data , vol.4 , pp. 1-24
    • Koren, Y.1
  • 20
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE 7, 1, 76-80.
    • (2003) Internet Computing, IEEE , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 23
    • 35148812647 scopus 로고    scopus 로고
    • Analysis and classification of multi-criteria recommender systems
    • MANOUSELIS, N. AND COSTOPOULOU, C. 2007. Analysis and classification of multi-criteria recommender systems. World Wide Web 10, 415-441.
    • (2007) World Wide Web , vol.10 , pp. 415-441
    • Manouselis, N.1    Costopoulou, C.2
  • 27
    • 84863504559 scopus 로고    scopus 로고
    • The Halo Effect in multi-component ratings and its implications for recommender systems: The case of Yahoo! Movies
    • SAHOO, N., KRISHNAN, R., DUNCAN, G., AND CALLAN, J. P. 2011. The Halo Effect in multi-component ratings and its implications for recommender systems: The case of Yahoo! Movies. Information Systems Research.
    • (2011) Information Systems Research
    • Sahoo, N.1    Krishnan, R.2    Duncan, G.3    Callan, J.P.4
  • 29
    • 3042642474 scopus 로고    scopus 로고
    • The influence of online product recommendations on consumers' online choices
    • SENECAL, S. AND NANTEL, J. 2004. The influence of online product recommendations on consumers' online choices. Journal of Retailing 80, 2, 159-169.
    • (2004) Journal of Retailing , vol.80 , Issue.2 , pp. 159-169
    • Senecal, S.1    Nantel, J.2
  • 32
    • 68149103275 scopus 로고    scopus 로고
    • Applying probabilistic latent semantic analysis to multi-criteria recommender system
    • ZHANG, Y., ZHUANG, Y., WU, J., AND ZHANG, L. 2009. Applying probabilistic latent semantic analysis to multi-criteria recommender system. AI Communications 22, 97-107.
    • (2009) AI Communications , vol.22 , pp. 97-107
    • Zhang, Y.1    Zhuang, Y.2    Wu, J.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.