메뉴 건너뛰기




Volumn , Issue , 2011, Pages 283-307

Tree-based methods and decision trees

Author keywords

ABC ACSS data set; CART; Chi square automatic interaction detection (CHAID); Customer satisfaction; Decision trees; PARTY; Tree based methods

Indexed keywords


EID: 84863308339     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119961154.ch15     Document Type: Chapter
Times cited : (7)

References (59)
  • 1
    • 0003535936 scopus 로고    scopus 로고
    • 2nd edn. New York: John Wiley & Sons, Inc
    • Agresti, A. (2002) Categorical Data Analysis, 2nd edn. New York: John Wiley & Sons, Inc.
    • (2002) Categorical Data Analysis
    • Agresti, A.1
  • 2
    • 77953192784 scopus 로고    scopus 로고
    • rpartOrdinal: An R package for deriving a classification tree for predicting an ordinal response
    • Archer, K.J. (2010) rpartOrdinal: An R package for deriving a classification tree for predicting an ordinal response. Journal of Statistical Software, 34, 1-17.
    • (2010) Journal of Statistical Software , vol.34 , pp. 1-17
    • Archer, K.J.1
  • 3
    • 29144505547 scopus 로고
    • Matching and prediction on the principle of biological classification
    • Belson, W.A. (1959) Matching and prediction on the principle of biological classification. Applied Statistics, 8, 65-75.
    • (1959) Applied Statistics , vol.8 , pp. 65-75
    • Belson, W.A.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a) Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996b) Heuristics of instability and stabilization in model selection. Annals of Statistics, 24, 2350-2383.
    • (1996) Annals of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 6
    • 0030190032 scopus 로고    scopus 로고
    • Technical note: some properties of splitting criteria
    • Breiman, L. (1996c) Technical note: some properties of splitting criteria. Machine Learning, 24, 41-47.
    • (1996) Machine Learning , vol.24 , pp. 41-47
    • Breiman, L.1
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998) Arcing classifiers. Annals of Statistics, 26, 801-849.
    • (1998) Annals of Statistics , vol.26 , pp. 801-849
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 77953318018 scopus 로고    scopus 로고
    • Twin boosting: Improved feature selection and prediction
    • Bühlmann, P. and Hothorn, T. (2010) Twin boosting: Improved feature selection and prediction. Statistics and Computing, 20, 119-138.
    • (2010) Statistics and Computing , vol.20 , pp. 119-138
    • Bühlmann, P.1    Hothorn, T.2
  • 13
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and Niblett, T. (1989) The CN2 induction algorithm. Machine Learning, 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 14
    • 79953172276 scopus 로고    scopus 로고
    • Adaptive partitioning schemes for bipartite ranking
    • How to grow and prune a ranking tree
    • Clémençon, S., Depecker, M. and Vayatis, N. (2011) Adaptive partitioning schemes for bipartite ranking. How to grow and prune a ranking tree. Machine Learning, 83, 31-69.
    • (2011) Machine Learning , vol.83 , pp. 31-69
    • Clémençon, S.1    Depecker, M.2    Vayatis, N.3
  • 15
    • 75549086279 scopus 로고    scopus 로고
    • Incremental tree-base imputation with lexicographic ordering
    • Conversano, C. and Siciliano, R. (2009) Incremental tree-base imputation with lexicographic ordering. Journal of Classification, 26, 361-379.
    • (2009) Journal of Classification , vol.26 , pp. 361-379
    • Conversano, C.1    Siciliano, R.2
  • 16
    • 0034728359 scopus 로고    scopus 로고
    • Tree stability diagnostics and some remedies for instability
    • Dannegger, F. (2000) Tree stability diagnostics and some remedies for instability. Statistics in Medicine, 19, 475-491.
    • (2000) Statistics in Medicine , vol.19 , pp. 475-491
    • Dannegger, F.1
  • 17
    • 0031508912 scopus 로고    scopus 로고
    • CART and best-ortho-basis: a connection
    • Donoho, D.L. (1997) CART and best-ortho-basis: a connection. Annals of Statistics, 25, 1870-1911.
    • (1997) Annals of Statistics , vol.25 , pp. 1870-1911
    • Donoho, D.L.1
  • 19
    • 77952428525 scopus 로고    scopus 로고
    • A comparison of pruning criteria for probability trees
    • Fierens, D., Ramon, J., Blockeel, H. and Bruynooghe, M. (2010) A comparison of pruning criteria for probability trees. Machine Learning, 78, 251-285.
    • (2010) Machine Learning , vol.78 , pp. 251-285
    • Fierens, D.1    Ramon, J.2    Blockeel, H.3    Bruynooghe, M.4
  • 20
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H. (2001) Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 27
    • 77953027393 scopus 로고    scopus 로고
    • Algorithms for optimal dyadic decision trees
    • Hush, D. and Porter, R. (2010) Algorithms for optimal dyadic decision trees. Machine Learning, 80, 85-107.
    • (2010) Machine Learning , vol.80 , pp. 85-107
    • Hush, D.1    Porter, R.2
  • 28
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass, G.V. (1980) An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119-127.
    • (1980) Applied Statistics , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 30
    • 0026770594 scopus 로고
    • Relative risk trees for censored survival data
    • LeBlanc, M. and Crowley, J. (1992) Relative risk trees for censored survival data. Biometrics, 48, 411-425.
    • (1992) Biometrics , vol.48 , pp. 411-425
    • LeBlanc, M.1    Crowley, J.2
  • 33
    • 84958676411 scopus 로고    scopus 로고
    • Methods to combine classification trees
    • M. Schader, W. Gaul and M. Vichi (eds), Berlin: Springer
    • Miglio, R. and Soffritti, G. (2003) Methods to combine classification trees. In M. Schader, W. Gaul and M. Vichi (eds), Between Data Science and Applied Data Analysis, pp. 65-73. Berlin: Springer.
    • (2003) Between Data Science and Applied Data Analysis , pp. 65-73
    • Miglio, R.1    Soffritti, G.2
  • 34
    • 1842731042 scopus 로고    scopus 로고
    • The comparison between classification trees through proximity measures
    • Miglio, R. and Soffritti, G. (2004) The comparison between classification trees through proximity measures. Computational Statistics & Data Analysis, 45, 577-593.
    • (2004) Computational Statistics & Data Analysis , vol.45 , pp. 577-593
    • Miglio, R.1    Soffritti, G.2
  • 35
  • 36
    • 0041939586 scopus 로고    scopus 로고
    • A fast splitting procedure for classification trees
    • Mola, F. and Siciliano, R. (1997) A fast splitting procedure for classification trees. Statistics and Computing, 7, 209-216.
    • (1997) Statistics and Computing , vol.7 , pp. 209-216
    • Mola, F.1    Siciliano, R.2
  • 38
  • 39
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multi-disciplinary survey
    • Murthy, S.K. (1998) Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2, 345-389.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy, S.K.1
  • 40
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Cambridge: Cambridge University Press
    • Niblett, T. and Bratko, I. (1986) Learning decision rules in noisy domains. In Proceedings in Expert Systems 86, pp. 25-34. Cambridge: Cambridge University Press.
    • (1986) Proceedings in Expert Systems 86 , pp. 25-34
    • Niblett, T.1    Bratko, I.2
  • 41
    • 33747135757 scopus 로고    scopus 로고
    • Customer satisfaction in the airline industry: The case of British Airways
    • Nicolini, G. and Salini, S. (2006) Customer satisfaction in the airline industry: The case of British Airways. Quality and Reliability Engineering International, 22, 581-589.
    • (2006) Quality and Reliability Engineering International , vol.22 , pp. 581-589
    • Nicolini, G.1    Salini, S.2
  • 42
    • 4544369306 scopus 로고    scopus 로고
    • An unbiased method for constructing multilabel classification trees
    • Noh, H.G., Song, M.S. and Park, S.H. (2004) An unbiased method for constructing multilabel classification trees. Computational Statistics & Data Analysis, 47, 149-164.
    • (2004) Computational Statistics & Data Analysis , vol.47 , pp. 149-164
    • Noh, H.G.1    Song, M.S.2    Park, S.H.3
  • 43
    • 47749099284 scopus 로고    scopus 로고
    • Classification trees for ordinal variables
    • Piccarreta, R. (2008) Classification trees for ordinal variables. Computational Statistics, 23, 407-427.
    • (2008) Computational Statistics , vol.23 , pp. 407-427
    • Piccarreta, R.1
  • 46
    • 77956880851 scopus 로고    scopus 로고
    • Analysis and correction of bias in total decrease in node impurity measures for tree-based algorithms
    • Sandri, M. and Zuccolotto, P. (2010) Analysis and correction of bias in total decrease in node impurity measures for tree-based algorithms. Statistics and Computing, 20, 393-407.
    • (2010) Statistics and Computing , vol.20 , pp. 393-407
    • Sandri, M.1    Zuccolotto, P.2
  • 47
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • Segal, M.R. (1988) Regression trees for censored data. Biometrics, 44, 35-47.
    • (1988) Biometrics , vol.44 , pp. 35-47
    • Segal, M.R.1
  • 48
    • 77955658676 scopus 로고    scopus 로고
    • On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms
    • Shalev-Shwartz, S. and Singer, Y. (2010) On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. Machine Learning, 80, 141-163.
    • (2010) Machine Learning , vol.80 , pp. 141-163
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 49
    • 0033616844 scopus 로고    scopus 로고
    • Combining classification trees using MLE
    • Shannon, W.D. and Banks, D. (1999) Combining classification trees using MLE. Statistics in Medicine, 18, 727-740.
    • (1999) Statistics in Medicine , vol.18 , pp. 727-740
    • Shannon, W.D.1    Banks, D.2
  • 50
    • 0038998791 scopus 로고    scopus 로고
    • Multivariate data analysis and modeling through classification and regression trees
    • Siciliano, R. and Mola, F. (2000) Multivariate data analysis and modeling through classification and regression trees. Computational Statistics & Data Analysis, 32, 285-301.
    • (2000) Computational Statistics & Data Analysis , vol.32 , pp. 285-301
    • Siciliano, R.1    Mola, F.2
  • 51
    • 75549090292 scopus 로고    scopus 로고
    • Decision tree induction
    • J. Wang (ed.), Hershey, PA: Information Science Reference
    • Siciliano, R. and Conversano, C. (2009) Decision tree induction. In J. Wang (ed.), Encyclopedia of Data Warehousing and Data Mining, pp. 624-630. Hershey, PA: Information Science Reference.
    • (2009) Encyclopedia of Data Warehousing and Data Mining , pp. 624-630
    • Siciliano, R.1    Conversano, C.2
  • 53
    • 0242557670 scopus 로고    scopus 로고
    • On the asymptotic theory of permutation statistics
    • Strasser, H. and Weber, C. (1999) On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics, 8, 220-250.
    • (1999) Mathematical Methods of Statistics , vol.8 , pp. 220-250
    • Strasser, H.1    Weber, C.2
  • 54
    • 84958672189 scopus 로고    scopus 로고
    • An introduction to recursive partitioning using the rpart routines. Technical report Mayo Foundation
    • Therneau, T.M. and Atkinson, E.J. (1997) An introduction to recursive partitioning using the rpart routines. Technical report 61, Mayo Foundation.
    • (1997) , vol.61
    • Therneau, T.M.1    Atkinson, E.J.2
  • 58
    • 65849418129 scopus 로고    scopus 로고
    • A tree-based method for modeling a multivariate ordinal response
    • Zhang, H. and Ye, Y. (2008) A tree-based method for modeling a multivariate ordinal response. Statistics and Its Interface, 1, 169-178.
    • (2008) Statistics and Its Interface , vol.1 , pp. 169-178
    • Zhang, H.1    Ye, Y.2
  • 59
    • 40849088010 scopus 로고    scopus 로고
    • A k-norm pruning algorithm for decision tree classifiers based on error rate estimation
    • Machine Learning
    • Zhong, M., Georgiopoulos, M. and Anagnostopoulos, G.C. (2008). A k-norm pruning algorithm for decision tree classifiers based on error rate estimation. Machine Learning, 71, 55-88.
    • (2008) Machine Learning , vol.71 , pp. 55-88
    • Zhong, M.1    Georgiopoulos, M.2    Anagnostopoulos, G.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.