메뉴 건너뛰기




Volumn 21, Issue 2, 2012, Pages 337-349

HYBP_PSSP: A hybrid back propagation method for predicting protein secondary structure

Author keywords

Compound pyramid model; Hybrid BP neural network; Intelligent prediction system; Protein secondary structure prediction

Indexed keywords

ACCURATE PREDICTION; ACTIVE AREA; ALIGNMENT ACCURACY; BP NEURAL NETWORKS; COGNITIVE MECHANISMS; COMPOUND PYRAMID MODELS; CRITICAL ASSESSMENT; DATA SETS; ESSENTIAL COMPONENT; EVOLUTIONARY INFORMATION; FOLD RECOGNITION; INTELLIGENT INTERFACE; INTELLIGENT PREDICTION; KNOWLEDGE DISCOVERY IN DATABASE; LOCAL STRUCTURE; PHYSICOCHEMICAL PROPERTY; POSITION SPECIFIC SCORING MATRIX; PREDICTION ACCURACY; PREDICTION METHODS; PROTEIN SECONDARY STRUCTURE; PROTEIN SECONDARY STRUCTURE PREDICTION; PROTEIN STRUCTURE PREDICTION; PSI-BLAST; SECONDARY STRUCTURES; SEQUENCE COMPARISONS; TARGET PROTEINS; TERTIARY STRUCTURES;

EID: 84863263953     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0739-7     Document Type: Article
Times cited : (4)

References (42)
  • 1
    • 79251640709 scopus 로고    scopus 로고
    • Privacy preserving back-propagation neural network learning over arbitrarily partitioned data
    • Ankur Bansal TC, Zhong S (2010) Privacy preserving back-propagation neural network learning over arbitrarily partitioned data. Neural Comput & Appl 20(1): 143-150.
    • (2010) Neural Comput & Appl , vol.20 , Issue.1 , pp. 143-150
    • Ankur Bansal, T.C.1    Zhong, S.2
  • 2
    • 84863257776 scopus 로고    scopus 로고
    • APSSP2 (2009) http://www. imtech. res. in/raghava/apssp2.
    • (2009) APSSP2
  • 3
    • 77958505860 scopus 로고    scopus 로고
    • A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems
    • Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput & Appl 19(8): 1165-1195.
    • (2010) Neural Comput & Appl , vol.19 , Issue.8 , pp. 1165-1195
    • Bahrammirzaee, A.1
  • 5
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G (1999) Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11): 937-946.
    • (1999) Bioinformatics , vol.15 , Issue.11 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 6
    • 0025303764 scopus 로고
    • Protein multiple sequence alignment and flexible pattern matching
    • Barton GJ (1990) Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol 183: 403-428.
    • (1990) Methods Enzymol , vol.183 , pp. 403-428
    • Barton, G.J.1
  • 7
    • 20744440509 scopus 로고    scopus 로고
    • Identification of transcription factor binding sites with variable-order bayesian networks
    • Ben Gal I, Shani A, Gohr A, Grau J et al (2005) Identification of transcription factor binding sites with variable-order bayesian networks. Bioinformatics 21(11): 2657-2666.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2657-2666
    • Ben Gal, I.1    Shani, A.2    Gohr, A.3    Grau, J.4
  • 8
    • 84863291035 scopus 로고    scopus 로고
    • Bhairpred
    • Bhairpred (2009) http://www. imtech. res. in/raghava/bhairpred.
    • (2009)
  • 9
    • 3543145933 scopus 로고    scopus 로고
    • Protein secondary structure: Entropy, correlations and prediction
    • Crooks GE, Brenner SE (2004) Protein secondary structure: entropy, correlations and prediction. Bioinformatics 20: 1603-1611.
    • (2004) Bioinformatics , vol.20 , pp. 1603-1611
    • Crooks, G.E.1    Brenner, S.E.2
  • 10
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34(4): 508-519.
    • (1999) Proteins , vol.34 , Issue.4 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 11
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40: 502-511.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 14
    • 0031518366 scopus 로고    scopus 로고
    • The prediction of protein secondary structure with a cascade correlation learning architecture of neural networks
    • F Vivarelli PF, Casadio R (1997) The prediction of protein secondary structure with a cascade correlation learning architecture of neural networks. Neural Comput & Appl 6(2): 57-62.
    • (1997) Neural Comput & Appl , vol.6 , Issue.2 , pp. 57-62
    • Vivarelli, F.P.F.1    Casadio, R.2
  • 15
    • 0029619259 scopus 로고
    • Knowledge-based protein secondary structure assignment
    • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23(4): 566-579.
    • (1995) Proteins , vol.23 , Issue.4 , pp. 566-579
    • Frishman, D.1    Argos, P.2
  • 16
    • 0030931336 scopus 로고    scopus 로고
    • 75% accuracy in protein secondary structure prediction
    • Frishman D, Argos P (1997) 75% accuracy in protein secondary structure prediction. Proteins 327: 329-335.
    • (1997) Proteins , vol.327 , pp. 329-335
    • Frishman, D.1    Argos, P.2
  • 17
    • 0023518540 scopus 로고
    • A strategy for the rapid multiple alignment of protein sequences: Confidence levels from tertiary structure comparisons
    • Geoffrey JB, Michael JES (1987) A strategy for the rapid multiple alignment of protein sequences: confidence levels from tertiary structure comparisons. J Mol Biol 198: 327-337.
    • (1987) J Mol Biol , vol.198 , pp. 327-337
    • Geoffrey, J.B.1    Michael, J.E.S.2
  • 20
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua SJ, Sun ZR (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17: 721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.J.1    Sun, Z.R.2
  • 21
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones D (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.1
  • 22
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12): 2577-2637.
    • (1983) Biopolymers , vol.22 , Issue.12 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 23
    • 0242362161 scopus 로고    scopus 로고
    • Combining local-structure, fold-recognition, and new fold methods for protein structure prediction
    • Karplus K, Karplus R, Draper J et al (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53(6): 491-496.
    • (2003) Proteins , vol.53 , Issue.6 , pp. 491-496
    • Karplus, K.1    Karplus, R.2    Draper, J.3
  • 24
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • Kim H, Park H (2003) Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 16(8): 553-560.
    • (2003) Protein Eng , vol.16 , Issue.8 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 25
    • 0029804192 scopus 로고    scopus 로고
    • Identification and application of the concepts important for accurate and reliable protein secondary structure prediction
    • King RD, Sternberg MJ (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5(11): 2298-2310.
    • (1996) Protein Sci , vol.5 , Issue.11 , pp. 2298-2310
    • King, R.D.1    Sternberg, M.J.2
  • 26
    • 0036836642 scopus 로고    scopus 로고
    • Combining the gor v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence
    • Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Combining the gor v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins 49: 154-166.
    • (2002) Proteins , vol.49 , pp. 154-166
    • Kloczkowski, A.1    Ting, K.L.2    Jernigan, R.L.3    Garnier, J.4
  • 27
    • 34848854803 scopus 로고    scopus 로고
    • Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces
    • Negi S, Braun W (2007) Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. J Mol Model 13(11): 1157-1167.
    • (2007) J Mol Model , vol.13 , Issue.11 , pp. 1157-1167
    • Negi, S.1    Braun, W.2
  • 28
    • 0033933636 scopus 로고    scopus 로고
    • Cascaded multiple classiers for secondary structure prediction
    • Ouali M, King R (2000) Cascaded multiple classiers for secondary structure prediction. Protein Sci 9: 1162-1176.
    • (2000) Protein Sci , vol.9 , pp. 1162-1176
    • Ouali, M.1    King, R.2
  • 30
    • 0023927904 scopus 로고
    • Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure
    • Richards FM, Kundrot CE (1988) Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure. Proteins-struct Funct Bioinform 3(2): 71-84.
    • (1988) Proteins-Struct Funct Bioinform , vol.3 , Issue.2 , pp. 71-84
    • Richards, F.M.1    Kundrot, C.E.2
  • 31
    • 3042618109 scopus 로고    scopus 로고
    • Bayesian network multi-classifiers for protein secondary structure prediction
    • Robles V, Larranaga P, Pena J et al (2004) Bayesian network multi-classifiers for protein secondary structure prediction. Art Intell Med 31(2): 117-136.
    • (2004) Art Intell Med , vol.31 , Issue.2 , pp. 117-136
    • Robles, V.1    Larranaga, P.2    Pena, J.3
  • 32
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2): 584-599.
    • (1993) J Mol Biol , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 33
    • 0028965118 scopus 로고
    • Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments
    • Salamov AA, Solovyev VV (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247(1): 11-15.
    • (1995) J Mol Biol , vol.247 , Issue.1 , pp. 11-15
    • Salamov, A.A.1    Solovyev, V.V.2
  • 34
    • 20744452365 scopus 로고    scopus 로고
    • Gor v server for protein secondary structure prediction
    • Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) Gor v server for protein secondary structure prediction. Bioinformatics 21(11): 2787-2788.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2787-2788
    • Sen, T.Z.1    Jernigan, R.L.2    Garnier, J.3    Kloczkowski, A.4
  • 35
    • 79956219935 scopus 로고    scopus 로고
    • Improved protein secondary structure prediction using a intelligent hsvm method with a new encoding scheme
    • Sui H, Qu W, Yan B, Wang L (2011) Improved protein secondary structure prediction using a intelligent hsvm method with a new encoding scheme. IJACT: Int J Adv Comput Technol 3(3): 239-250.
    • (2011) IJACT: Int J Adv Comput Technol , vol.3 , Issue.3 , pp. 239-250
    • Sui, H.1    Qu, W.2    Yan, B.3    Wang, L.4
  • 36
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Sujun H, Zhirong S (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308(2): 397-407.
    • (2001) J Mol Biol , vol.308 , Issue.2 , pp. 397-407
    • Sujun, H.1    Zhirong, S.2
  • 38
    • 60849135389 scopus 로고    scopus 로고
    • Kaapro: An approach of protein secondary structure prediction based on kdd* in the compound pyramid prediction model
    • Yang BR, Hou W, Zhou Z (2009) Kaapro: An approach of protein secondary structure prediction based on kdd* in the compound pyramid prediction model. Expert Syst Appl 36(5): 9000-9006.
    • (2009) Expert Syst Appl , vol.36 , Issue.5 , pp. 9000-9006
    • Yang, B.R.1    Hou, W.2    Zhou, Z.3
  • 39
    • 0036520412 scopus 로고    scopus 로고
    • Ming quantitative association rules with standard sql queries and it's evaluation
    • Yang BR, Sun HH, Xiong FL (2002) Ming quantitative association rules with standard sql queries and it's evaluation. J Comput Res Dev 39(3): 307-312.
    • (2002) J Comput Res Dev , vol.39 , Issue.3 , pp. 307-312
    • Yang, B.R.1    Sun, H.H.2    Xiong, F.L.3
  • 40
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment
    • Zemla A, Venclovas C, Fidelis K, Rost B (1999) A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34(2): 220-223.
    • (1999) Proteins , vol.34 , Issue.2 , pp. 220-223
    • Zemla, A.1    Venclovas, C.2    Fidelis, K.3    Rost, B.4
  • 41
    • 79952559699 scopus 로고    scopus 로고
    • Study on source of classification in imbalanced datasets based on new ensemble classifier
    • Zhai Y, Yang B, Qu W, Sui H (2011) Study on source of classification in imbalanced datasets based on new ensemble classifier. J Syst Eng Electron 33(1): 196-201.
    • (2011) J Syst Eng Electron , vol.33 , Issue.1 , pp. 196-201
    • Zhai, Y.1    Yang, B.2    Qu, W.3    Sui, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.