메뉴 건너뛰기




Volumn 36, Issue 2, 2012, Pages 661-676

Neural network diagnostic system for dengue patients risk classification

Author keywords

Levenberg Marquardt dengue fever; Multilayer perceptron; Scaled conjugate gradient

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION ALGORITHM; DENGUE; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; DISEASE CLASSIFICATION; FEMALE; HUMAN; MALE; PERCEPTRON; PREDICTOR VARIABLE; RISK ASSESSMENT; SENSITIVITY AND SPECIFICITY; STATISTICAL ANALYSIS; ALGORITHM; BIOLOGICAL MODEL; BLOOD; BODY MASS; CLASSIFICATION; DECISION SUPPORT SYSTEM; HEMATOCRIT; ORGANIZATION AND MANAGEMENT; RISK FACTOR; SEX DIFFERENCE; THROMBOCYTE COUNT;

EID: 84863205725     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9532-x     Document Type: Article
Times cited : (18)

References (30)
  • 2
    • 0036468861 scopus 로고    scopus 로고
    • Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century
    • Gubler, G. J., Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10:100-103, 2002.
    • (2002) Trends Microbiol. , vol.10 , pp. 100-103
    • Gubler, G.J.1
  • 9
    • 23944451153 scopus 로고    scopus 로고
    • A novel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysis using artificial neural network (ANN)
    • DOI 10.1016/j.cmpb.2005.04.002, PII S0169260705000866
    • Ibrahim, F., Taib, M. N., Wan Abas, W. A. B., Chan, C. G., and Sulaiman, S., A Novel Dengue fever (DF) Dengue and Hemorrhagic fever (DHF) Analysis using artificial neural network. Comput. Meth. Programs Biomed. 79:273-281, 2005c. (Pubitemid 41196691)
    • (2005) Computer Methods and Programs in Biomedicine , vol.79 , Issue.3 , pp. 273-281
    • Ibrahim, F.1    Taib, M.N.2    Abas, W.A.B.W.3    Guan, C.C.4    Sulaiman, S.5
  • 10
    • 77649236004 scopus 로고    scopus 로고
    • Reexamination of risk criteria in dengue patients using the self-organizing map
    • Faisal, T., Taib, M. N., and Ibrahim, F., Reexamination of risk criteria in dengue patients using the self-organizing map. Med. Biol. Eng. Comput. 48:293-301, 2010.
    • (2010) Med. Biol. Eng. Comput. , vol.48 , pp. 293-301
    • Faisal, T.1    Taib, M.N.2    Ibrahim, F.3
  • 11
    • 70449565546 scopus 로고    scopus 로고
    • A noninvasive intelligent approach for predicting the risk in dengue patients
    • Faisal, T., Ibrahim, F., and Taib, M. N., A noninvasive intelligent approach for predicting the risk in dengue patients. Expert Syst. Appl. 37:2175-2181, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2175-2181
    • Faisal, T.1    Ibrahim, F.2    Taib, M.N.3
  • 12
    • 33646148475 scopus 로고    scopus 로고
    • Comparison of multilayer perceptron training algorithms for portal venous doppler signals in the cirrhosis disease
    • Icer, S., Kara, S., and Guven, A., Comparison of multilayer perceptron training algorithms for portal venous doppler signals in the cirrhosis disease. Expert Syst. Appl. 31:406-413, 2006.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 406-413
    • Icer, S.1    Kara, S.2    Guven, A.3
  • 13
  • 15
    • 33751402587 scopus 로고    scopus 로고
    • Constructing of the risk classification model of cervical cancer by artificial neural network
    • DOI 10.1016/j.eswa.2006.02.020, PII S0957417406000856
    • Qiu, X., Tao, N., Tan, Y., and Wu, X., Constructing of the risk classification model of cervical cancer by artificial neural network. Expert Syst. Appl. 32:1094-1099, 2007. (Pubitemid 44821798)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1094-1099
    • Qiu, X.1    Tao, N.2    Tan, Y.3    Wu, X.4
  • 16
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T., and Menhaj, M. B., Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6):989-993, 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 17
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, A. F., A scaled conjugate gradient algorithm for fast supervised learning, Neural Netw. 6:525-533, 1993.
    • (1993) Neural Netw. , vol.6 , pp. 525-533
    • Moller, A.F.1
  • 18
    • 0033714961 scopus 로고    scopus 로고
    • Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward Neural Networks
    • Ampazis, N., and Perantonis, S. J., Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward Neural Networks, Proceedings of the IEEE-INNS-ENNS International Joint Conference, pp. 126-131, 2000.
    • (2000) Proceedings of the IEEE-INNS-ENNS International Joint Conference , pp. 126-131
    • Ampazis, N.1    Perantonis, S.J.2
  • 21
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • Charalambous, C., Conjugate gradient algorithm for efficient training of artificial neural networks, IEE Proceedings, no. 139, pp. 301-310. 1992.
    • (1992) IEE Proceedings , Issue.139 , pp. 301-310
    • Charalambous, C.1
  • 23
    • 33644889643 scopus 로고    scopus 로고
    • Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks
    • Delen, D., Sharda, R., and Bessonov, M., Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid. Anal. Prev. 38:434-444, 2006.
    • (2006) Accid. Anal. Prev. , vol.38 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 24
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Quebec, Canada
    • Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI). Montreal, Quebec, Canada, pp. 1137-1145, 1995.
    • (1995) The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) , pp. 1137-1145
    • Kohavi, R.1
  • 25
    • 33745737321 scopus 로고    scopus 로고
    • Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data
    • PII S027861250580010X
    • Feng, C. X., Yu, Z. G., Kingi, U., and Baig, M. P., Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modelling of machining surface roughness data. J. Manuf. Syst. 24(2):93-107, 2005. (Pubitemid 44015986)
    • (2005) Journal of Manufacturing Systems , vol.24 , Issue.2 , pp. 93-107
    • Jack Feng, C.-X.1    Yu, Z.-G.S.2    Kingi, U.3    Pervaiz Baig, M.4
  • 26
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., and Mcneil, B. J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. no. 143, vol. 29, 1982.
    • (1982) Radiology , vol.29 , Issue.143
    • Hanley, J.A.1    McNeil, B.J.2
  • 27
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz, C. E., Basic principles of ROC analysis. Semin. Nucl. Med. 8:283-298, 1978. (Pubitemid 9075026)
    • (1978) Seminars in Nuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 28
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • Maciej, A., Piotr, A., Jacek, M., Joseph, Y., Jay, A., and Georgia, D., Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Netw. 21:427-436, 2008.
    • (2008) Neural Netw. , vol.21 , pp. 427-436
    • MacIej, A.1    Piotr, A.2    Jacek, M.3    Joseph, Y.4    Jay, A.5    Georgia, D.6
  • 30
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J. A., Measuring the accuracy of diagnostic systems. Science. 240:1285-1293, 1988.
    • (1988) Science. , vol.240 , pp. 1285-1293
    • Swets, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.