메뉴 건너뛰기




Volumn 24, Issue 2, 2005, Pages 93-107

Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data

Author keywords

Cross validation; Data mining; ISO 13565; Machining surface roughness; Neural networks; Predictive modeling

Indexed keywords

CROSS VALIDATION; ISO 13565; MACHINING SURFACE ROUGHNESS; PREDICTIVE MODELING;

EID: 33745737321     PISSN: 02786125     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0278-6125(05)80010-X     Document Type: Article
Times cited : (30)

References (51)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen D.M. The relationship between variable selection and data augmentation and a method for prediction. Technometrics v16 n1 (1974) 125-127
    • (1974) Technometrics , vol.v16 , Issue.n1 , pp. 125-127
    • Allen, D.M.1
  • 6
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • Breiman L. The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. Journal of the American Statistical Association v87 n419 (1992) 738-754
    • (1992) Journal of the American Statistical Association , vol.v87 , Issue.n419 , pp. 738-754
    • Breiman, L.1
  • 7
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: the X-random case
    • Breiman L., and Spector P. Submodel selection and evaluation in regression: the X-random case. Int'l Statistics Review v60 n3 (1992) 291-319
    • (1992) Int'l Statistics Review , vol.v60 , Issue.n3 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 8
    • 0345925131 scopus 로고
    • Assessing a neural net: validation procedures
    • (Mar./Apr.)
    • (Mar./Apr.). Burke L. Assessing a neural net: validation procedures. PC AI (1993) 20-24
    • (1993) PC AI , pp. 20-24
    • Burke, L.1
  • 9
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods
    • Burman P. A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika v76 n4 (1989) 503-514
    • (1989) Biometrika , vol.v76 , Issue.n4 , pp. 503-514
    • Burman, P.1
  • 10
    • 0009935784 scopus 로고
    • Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods
    • A, Part 3
    • A, Part 3. Burman P. Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods. Sankhva: The Indian Journal of Statistics v52 (1990) 314-345
    • (1990) Sankhva: The Indian Journal of Statistics , vol.v52 , pp. 314-345
    • Burman, P.1
  • 11
    • 0000875607 scopus 로고
    • Why two hidden layers are better than one?
    • Washington, DC, IEEE Press, Piscataway, NJ
    • Chester D.L. Why two hidden layers are better than one?. Proc. of 4th IEEE Annual Int'l Conf. on Neural Networks. Washington, DC (1990), IEEE Press, Piscataway, NJ I.265-I.268
    • (1990) Proc. of 4th IEEE Annual Int'l Conf. on Neural Networks
    • Chester, D.L.1
  • 12
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: considerations and case studies
    • Coit D.W., Jackson B.T., and Smith A.E. Static neural network process models: considerations and case studies. Int'l Journal of Production Research v36 n11 (1998) 2953-2967
    • (1998) Int'l Journal of Production Research , vol.v36 , Issue.n11 , pp. 2953-2967
    • Coit, D.W.1    Jackson, B.T.2    Smith, A.E.3
  • 13
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems v2 n4 (1989) 303-314
    • (1989) Mathematics of Control, Signals and Systems , vol.v2 , Issue.n4 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association v78 n382 (1983) 316-331
    • (1983) Journal of the American Statistical Association , vol.v78 , Issue.n382 , pp. 316-331
    • Efron, B.1
  • 16
    • 0040081739 scopus 로고    scopus 로고
    • Subset selection in predictive modeling of CMM digitization uncertainty
    • Feng C.-X., and Wang X.-F. Subset selection in predictive modeling of CMM digitization uncertainty. Journal of Manufacturing Systems v21 n6 (2002) 419-439
    • (2002) Journal of Manufacturing Systems , vol.v21 , Issue.n6 , pp. 419-439
    • Feng, C.-X.1    Wang, X.-F.2
  • 17
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: neural networks versus regression
    • Feng C.-X., and Wang X.-F. Surface roughness predictive modeling: neural networks versus regression. IIE Trans. v35 n1 (2003) 11-27
    • (2003) IIE Trans. , vol.v35 , Issue.n1 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 18
    • 1142305317 scopus 로고    scopus 로고
    • Data mining applied to predictive modeling of the knurling process
    • Feng C.-X., and Wang X.-F. Data mining applied to predictive modeling of the knurling process. IIE Trans. v36 n3 (2004) 253-263
    • (2004) IIE Trans. , vol.v36 , Issue.n3 , pp. 253-263
    • Feng, C.-X.1    Wang, X.-F.2
  • 19
    • 77956014698 scopus 로고    scopus 로고
    • Neural networks modeling of turning surface roughness parameters defined by ISO 13565
    • (Also published as Technical Paper No. MS03-202), Society of Manufacturing Engineers, Dearborn, MI
    • (Also published as Technical Paper No. MS03-202). Feng C.-X., and Yu Z. Neural networks modeling of turning surface roughness parameters defined by ISO 13565. ransactions of NAMRI1SME v31 (2003), Society of Manufacturing Engineers, Dearborn, MI 467-474
    • (2003) ransactions of NAMRI1SME , vol.v31 , pp. 467-474
    • Feng, C.-X.1    Yu, Z.2
  • 20
    • 0040482037 scopus 로고    scopus 로고
    • Neural networks modeling of honing surface roughness parameters defined by ISO13565
    • Feng C.-X., Wang X.-F., and Yu Z. Neural networks modeling of honing surface roughness parameters defined by ISO13565. Journal of Manufacturing Systems v21 n5 (2002) 395-408
    • (2002) Journal of Manufacturing Systems , vol.v21 , Issue.n5 , pp. 395-408
    • Feng, C.-X.1    Wang, X.-F.2    Yu, Z.3
  • 21
    • 28944449352 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural networks models for data from designed experiments
    • Feng C.-X., Yu Z., and Kusiak A. Selection and validation of predictive regression and neural networks models for data from designed experiments. IIE Trans. v38 n1 (2006) 13-24
    • (2006) IIE Trans. , vol.v38 , Issue.n1 , pp. 13-24
    • Feng, C.-X.1    Yu, Z.2    Kusiak, A.3
  • 22
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Computation v4 n1 (1992) 1-58
    • (1992) Neural Computation , vol.v4 , Issue.n1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 27
    • 23844478259 scopus 로고    scopus 로고
    • Neural network modeling of small datasets
    • Ingrassia S., and Morlini I. Neural network modeling of small datasets. Technometrics v47 n3 (2005) 297-311
    • (2005) Technometrics , vol.v47 , Issue.n3 , pp. 297-311
    • Ingrassia, S.1    Morlini, I.2
  • 28
    • 33745753606 scopus 로고    scopus 로고
    • Geometrical product specifications (GPS) - surface texture: profile method; surface having stratified functional properties - part 2: height characterization using linear material ratio
    • Geneva, Switzerland
    • Geneva, Switzerland. ISO. Geometrical product specifications (GPS) - surface texture: profile method; surface having stratified functional properties - part 2: height characterization using linear material ratio. ISO 13565-2. 1st ed. (1996)
    • (1996) ISO 13565-2. 1st ed.
    • ISO1
  • 29
    • 0001698980 scopus 로고
    • Backpropagation is sensitive to initial conditions
    • Kolen J.F., and Pollack J.B. Backpropagation is sensitive to initial conditions. Complex Systems v4 n3 (1990) 269-280
    • (1990) Complex Systems , vol.v4 , Issue.n3 , pp. 269-280
    • Kolen, J.F.1    Pollack, J.B.2
  • 33
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: discrete index set
    • L, cross-validation and generalized cross-validation: discrete index set. The Annals of Statistics v15 n3 (1987) 958-975
    • (1987) The Annals of Statistics , vol.v15 , Issue.n3 , pp. 958-975
    • Li, K.-C.1
  • 39
  • 40
    • 84952126648 scopus 로고
    • Validation of regression models: methods and examples
    • Snee R.D. Validation of regression models: methods and examples. Technometrics v19 n4 (1977) 415-428
    • (1977) Technometrics , vol.v19 , Issue.n4 , pp. 415-428
    • Snee, R.D.1
  • 41
    • 0000629975 scopus 로고
    • Cross- validatiry choice and assessment of statistical predictions (with discussions)
    • Stone M. Cross- validatiry choice and assessment of statistical predictions (with discussions). Journal of Royal Statistical Society v36 n2 (1974) 111-147
    • (1974) Journal of Royal Statistical Society , vol.v36 , Issue.n2 , pp. 111-147
    • Stone, M.1
  • 42
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone M. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of Royal Statistical Society v39 n1 (1977) 44-47
    • (1977) Journal of Royal Statistical Society , vol.v39 , Issue.n1 , pp. 44-47
    • Stone, M.1
  • 44
    • 0001572432 scopus 로고    scopus 로고
    • A comparison of some error estimates for neural network models
    • Tibshirani R. A comparison of some error estimates for neural network models. Neural Computation v8 n2 (1996) 152-163
    • (1996) Neural Computation , vol.v8 , Issue.n2 , pp. 152-163
    • Tibshirani, R.1
  • 45
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey J.M., and Smith A.E. Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Traits. on Systems, Man and Cybernetics, Part C v28 n3 (1998) 417-430
    • (1998) IEEE Traits. on Systems, Man and Cybernetics, Part C , vol.v28 , Issue.n3 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 49
    • 21144472438 scopus 로고
    • Model selection via multifold cross-validation
    • Zhang P. Model selection via multifold cross-validation. Annals of Statistics v21 n1 (1993) 299-331
    • (1993) Annals of Statistics , vol.v21 , Issue.n1 , pp. 299-331
    • Zhang, P.1
  • 50
    • 0037545145 scopus 로고    scopus 로고
    • No free lunch for cross-validation
    • Zhu H., and Rohwer R. No free lunch for cross-validation. Neural Computation v8 n6 (1996) 1421-1426
    • (1996) Neural Computation , vol.v8 , Issue.n6 , pp. 1421-1426
    • Zhu, H.1    Rohwer, R.2
  • 51
    • 27744493376 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies
    • Dept. of Industrial & Mfg. Engg. & Technology, Bradley Univ., Peoria, IL
    • Yu Z.-G. Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS thesis (2003), Dept. of Industrial & Mfg. Engg. & Technology, Bradley Univ., Peoria, IL
    • (2003) MS thesis
    • Yu, Z.-G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.