-
1
-
-
0016029778
-
The relationship between variable selection and data augmentation and a method for prediction
-
Allen D.M. The relationship between variable selection and data augmentation and a method for prediction. Technometrics v16 n1 (1974) 125-127
-
(1974)
Technometrics
, vol.v16
, Issue.n1
, pp. 125-127
-
-
Allen, D.M.1
-
3
-
-
0024124745
-
A multilayer perceptron network for the diagnosis of low back pain
-
San Diego, IEEE Press, Piscataway, NJ
-
Bounds D.G., Lloyd P.J., and Mathew B. A multilayer perceptron network for the diagnosis of low back pain. Proc. of 2nd IEEE Annual Int'l Conf. on Neural Networks. San Diego (1988), IEEE Press, Piscataway, NJ II.481-II.489
-
(1988)
Proc. of 2nd IEEE Annual Int'l Conf. on Neural Networks
-
-
Bounds, D.G.1
Lloyd, P.J.2
Mathew, B.3
-
5
-
-
29544433143
-
-
John Wiley & Sons, New York
-
Box G.E.P., Hunter J.S., and Hunter W.G. Statistics fbr Experimenters: Design, Innovation, and Discovery. 2nd ed. (2005), John Wiley & Sons, New York
-
(2005)
Statistics fbr Experimenters: Design, Innovation, and Discovery. 2nd ed.
-
-
Box, G.E.P.1
Hunter, J.S.2
Hunter, W.G.3
-
6
-
-
0001587464
-
The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
-
Breiman L. The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. Journal of the American Statistical Association v87 n419 (1992) 738-754
-
(1992)
Journal of the American Statistical Association
, vol.v87
, Issue.n419
, pp. 738-754
-
-
Breiman, L.1
-
7
-
-
0000343716
-
Submodel selection and evaluation in regression: the X-random case
-
Breiman L., and Spector P. Submodel selection and evaluation in regression: the X-random case. Int'l Statistics Review v60 n3 (1992) 291-319
-
(1992)
Int'l Statistics Review
, vol.v60
, Issue.n3
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
8
-
-
0345925131
-
Assessing a neural net: validation procedures
-
(Mar./Apr.)
-
(Mar./Apr.). Burke L. Assessing a neural net: validation procedures. PC AI (1993) 20-24
-
(1993)
PC AI
, pp. 20-24
-
-
Burke, L.1
-
9
-
-
0000354976
-
A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods
-
Burman P. A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika v76 n4 (1989) 503-514
-
(1989)
Biometrika
, vol.v76
, Issue.n4
, pp. 503-514
-
-
Burman, P.1
-
10
-
-
0009935784
-
Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods
-
A, Part 3
-
A, Part 3. Burman P. Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods. Sankhva: The Indian Journal of Statistics v52 (1990) 314-345
-
(1990)
Sankhva: The Indian Journal of Statistics
, vol.v52
, pp. 314-345
-
-
Burman, P.1
-
11
-
-
0000875607
-
Why two hidden layers are better than one?
-
Washington, DC, IEEE Press, Piscataway, NJ
-
Chester D.L. Why two hidden layers are better than one?. Proc. of 4th IEEE Annual Int'l Conf. on Neural Networks. Washington, DC (1990), IEEE Press, Piscataway, NJ I.265-I.268
-
(1990)
Proc. of 4th IEEE Annual Int'l Conf. on Neural Networks
-
-
Chester, D.L.1
-
12
-
-
0032205695
-
Static neural network process models: considerations and case studies
-
Coit D.W., Jackson B.T., and Smith A.E. Static neural network process models: considerations and case studies. Int'l Journal of Production Research v36 n11 (1998) 2953-2967
-
(1998)
Int'l Journal of Production Research
, vol.v36
, Issue.n11
, pp. 2953-2967
-
-
Coit, D.W.1
Jackson, B.T.2
Smith, A.E.3
-
13
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems v2 n4 (1989) 303-314
-
(1989)
Mathematics of Control, Signals and Systems
, vol.v2
, Issue.n4
, pp. 303-314
-
-
Cybenko, G.1
-
14
-
-
84950461478
-
Estimating the error rate of a prediction rule: improvement on cross-validation
-
Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association v78 n382 (1983) 316-331
-
(1983)
Journal of the American Statistical Association
, vol.v78
, Issue.n382
, pp. 316-331
-
-
Efron, B.1
-
16
-
-
0040081739
-
Subset selection in predictive modeling of CMM digitization uncertainty
-
Feng C.-X., and Wang X.-F. Subset selection in predictive modeling of CMM digitization uncertainty. Journal of Manufacturing Systems v21 n6 (2002) 419-439
-
(2002)
Journal of Manufacturing Systems
, vol.v21
, Issue.n6
, pp. 419-439
-
-
Feng, C.-X.1
Wang, X.-F.2
-
17
-
-
0037233403
-
Surface roughness predictive modeling: neural networks versus regression
-
Feng C.-X., and Wang X.-F. Surface roughness predictive modeling: neural networks versus regression. IIE Trans. v35 n1 (2003) 11-27
-
(2003)
IIE Trans.
, vol.v35
, Issue.n1
, pp. 11-27
-
-
Feng, C.-X.1
Wang, X.-F.2
-
18
-
-
1142305317
-
Data mining applied to predictive modeling of the knurling process
-
Feng C.-X., and Wang X.-F. Data mining applied to predictive modeling of the knurling process. IIE Trans. v36 n3 (2004) 253-263
-
(2004)
IIE Trans.
, vol.v36
, Issue.n3
, pp. 253-263
-
-
Feng, C.-X.1
Wang, X.-F.2
-
19
-
-
77956014698
-
Neural networks modeling of turning surface roughness parameters defined by ISO 13565
-
(Also published as Technical Paper No. MS03-202), Society of Manufacturing Engineers, Dearborn, MI
-
(Also published as Technical Paper No. MS03-202). Feng C.-X., and Yu Z. Neural networks modeling of turning surface roughness parameters defined by ISO 13565. ransactions of NAMRI1SME v31 (2003), Society of Manufacturing Engineers, Dearborn, MI 467-474
-
(2003)
ransactions of NAMRI1SME
, vol.v31
, pp. 467-474
-
-
Feng, C.-X.1
Yu, Z.2
-
20
-
-
0040482037
-
Neural networks modeling of honing surface roughness parameters defined by ISO13565
-
Feng C.-X., Wang X.-F., and Yu Z. Neural networks modeling of honing surface roughness parameters defined by ISO13565. Journal of Manufacturing Systems v21 n5 (2002) 395-408
-
(2002)
Journal of Manufacturing Systems
, vol.v21
, Issue.n5
, pp. 395-408
-
-
Feng, C.-X.1
Wang, X.-F.2
Yu, Z.3
-
21
-
-
28944449352
-
Selection and validation of predictive regression and neural networks models for data from designed experiments
-
Feng C.-X., Yu Z., and Kusiak A. Selection and validation of predictive regression and neural networks models for data from designed experiments. IIE Trans. v38 n1 (2006) 13-24
-
(2006)
IIE Trans.
, vol.v38
, Issue.n1
, pp. 13-24
-
-
Feng, C.-X.1
Yu, Z.2
Kusiak, A.3
-
26
-
-
0003684449
-
-
Springer, New York
-
Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2001), Springer, New York
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
27
-
-
23844478259
-
Neural network modeling of small datasets
-
Ingrassia S., and Morlini I. Neural network modeling of small datasets. Technometrics v47 n3 (2005) 297-311
-
(2005)
Technometrics
, vol.v47
, Issue.n3
, pp. 297-311
-
-
Ingrassia, S.1
Morlini, I.2
-
28
-
-
33745753606
-
Geometrical product specifications (GPS) - surface texture: profile method; surface having stratified functional properties - part 2: height characterization using linear material ratio
-
Geneva, Switzerland
-
Geneva, Switzerland. ISO. Geometrical product specifications (GPS) - surface texture: profile method; surface having stratified functional properties - part 2: height characterization using linear material ratio. ISO 13565-2. 1st ed. (1996)
-
(1996)
ISO 13565-2. 1st ed.
-
-
ISO1
-
29
-
-
0001698980
-
Backpropagation is sensitive to initial conditions
-
Kolen J.F., and Pollack J.B. Backpropagation is sensitive to initial conditions. Complex Systems v4 n3 (1990) 269-280
-
(1990)
Complex Systems
, vol.v4
, Issue.n3
, pp. 269-280
-
-
Kolen, J.F.1
Pollack, J.B.2
-
33
-
-
0001462696
-
L, cross-validation and generalized cross-validation: discrete index set
-
L, cross-validation and generalized cross-validation: discrete index set. The Annals of Statistics v15 n3 (1987) 958-975
-
(1987)
The Annals of Statistics
, vol.v15
, Issue.n3
, pp. 958-975
-
-
Li, K.-C.1
-
39
-
-
21144474350
-
Linear model selection by cross-validation
-
Shao J. Linear model selection by cross-validation. Journal of the American Statistical Association v88 n422 (1993) 486-494
-
(1993)
Journal of the American Statistical Association
, vol.v88
, Issue.n422
, pp. 486-494
-
-
Shao, J.1
-
40
-
-
84952126648
-
Validation of regression models: methods and examples
-
Snee R.D. Validation of regression models: methods and examples. Technometrics v19 n4 (1977) 415-428
-
(1977)
Technometrics
, vol.v19
, Issue.n4
, pp. 415-428
-
-
Snee, R.D.1
-
41
-
-
0000629975
-
Cross- validatiry choice and assessment of statistical predictions (with discussions)
-
Stone M. Cross- validatiry choice and assessment of statistical predictions (with discussions). Journal of Royal Statistical Society v36 n2 (1974) 111-147
-
(1974)
Journal of Royal Statistical Society
, vol.v36
, Issue.n2
, pp. 111-147
-
-
Stone, M.1
-
42
-
-
0000859675
-
An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
-
Stone M. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of Royal Statistical Society v39 n1 (1977) 44-47
-
(1977)
Journal of Royal Statistical Society
, vol.v39
, Issue.n1
, pp. 44-47
-
-
Stone, M.1
-
44
-
-
0001572432
-
A comparison of some error estimates for neural network models
-
Tibshirani R. A comparison of some error estimates for neural network models. Neural Computation v8 n2 (1996) 152-163
-
(1996)
Neural Computation
, vol.v8
, Issue.n2
, pp. 152-163
-
-
Tibshirani, R.1
-
45
-
-
0032140934
-
Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
-
Twomey J.M., and Smith A.E. Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Traits. on Systems, Man and Cybernetics, Part C v28 n3 (1998) 417-430
-
(1998)
IEEE Traits. on Systems, Man and Cybernetics, Part C
, vol.v28
, Issue.n3
, pp. 417-430
-
-
Twomey, J.M.1
Smith, A.E.2
-
48
-
-
0003460749
-
-
John Wiley & Sons, New York
-
Wit C.F.J., and Hamada M. Experiments: Planning, Analysis, and Parameter Design Optimization (1998), John Wiley & Sons, New York
-
(1998)
Experiments: Planning, Analysis, and Parameter Design Optimization
-
-
Wit, C.F.J.1
Hamada, M.2
-
49
-
-
21144472438
-
Model selection via multifold cross-validation
-
Zhang P. Model selection via multifold cross-validation. Annals of Statistics v21 n1 (1993) 299-331
-
(1993)
Annals of Statistics
, vol.v21
, Issue.n1
, pp. 299-331
-
-
Zhang, P.1
-
50
-
-
0037545145
-
No free lunch for cross-validation
-
Zhu H., and Rohwer R. No free lunch for cross-validation. Neural Computation v8 n6 (1996) 1421-1426
-
(1996)
Neural Computation
, vol.v8
, Issue.n6
, pp. 1421-1426
-
-
Zhu, H.1
Rohwer, R.2
-
51
-
-
27744493376
-
Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies
-
Dept. of Industrial & Mfg. Engg. & Technology, Bradley Univ., Peoria, IL
-
Yu Z.-G. Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS thesis (2003), Dept. of Industrial & Mfg. Engg. & Technology, Bradley Univ., Peoria, IL
-
(2003)
MS thesis
-
-
Yu, Z.-G.1
|