메뉴 건너뛰기




Volumn 36, Issue 2, 2012, Pages 979-994

Knowledge extraction algorithm for variances handling of CP using integrated hybrid genetic double multi-group cooperative PSO and DPSO

Author keywords

Clinical pathway (CP); Data mining; Osteosarcoma; Particle swarm optimization algorithm; Rule extraction; Variances handling

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; CLINICAL PATHWAY; DATA MINING; EVOLUTIONARY ALGORITHM; GENETIC ALGORITHM; HUMAN; MATHEMATICAL MODEL; OSTEOSARCOMA; PARTICLE SWARM OPTIMIZATION ALGORITHM; PATIENT CARE; RULE EXTRACTION ALGORITHM; SOCIAL BEHAVIOR; METHODOLOGY; ORGANIZATION AND MANAGEMENT; REGISTER; STATISTICS; VALIDATION STUDY;

EID: 84863200616     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9562-4     Document Type: Article
Times cited : (17)

References (36)
  • 1
    • 58149313819 scopus 로고    scopus 로고
    • Developing themethod of server controlled outcomes management and variance analysis [J]
    • Matsumoto, K., Tanioka, T., Osaka, K., et al., Developing themethod of server controlled outcomes management and variance analysis [J]. Electron. Notes Theor. Comput. Sci. 225:221-237, 2009.
    • (2009) Electron. Notes Theor. Comput. Sci. , vol.225 , pp. 221-237
    • Matsumoto, K.1    Tanioka, T.2    Osaka, K.3
  • 2
    • 33646143034 scopus 로고    scopus 로고
    • A new approach to systematization of the management of paper-based clinical pathways
    • Wakamiya, S., and Yamauchi, K., A new approach to systematization of the management of paper-based clinical pathways. Comput. Meth. Programs Biomed. 82:169-176, 2006.
    • (2006) Comput. Meth. Programs Biomed. , vol.82 , pp. 169-176
    • Wakamiya, S.1    Yamauchi, K.2
  • 6
    • 2342652260 scopus 로고    scopus 로고
    • An intelligent system for customer targeting: A data mining approach
    • Kim, Y. S., and Street, W. N., An intelligent system for customer targeting: A data mining approach. Decis. Support Syst. 37:215-228, 2004.
    • (2004) Decis. Support Syst. , vol.37 , pp. 215-228
    • Kim, Y.S.1    Street, W.N.2
  • 7
    • 0001983468 scopus 로고    scopus 로고
    • Direct marketing modeling with CART and CHAID
    • Haughton, D., and Oulabi, S., Direct marketing modeling with CART and CHAID. J. Direct Mark. 11(4):42-52, 1997.
    • (1997) J. Direct Mark. , vol.11 , Issue.4 , pp. 42-52
    • Haughton, D.1    Oulabi, S.2
  • 8
    • 12244294767 scopus 로고    scopus 로고
    • Mining customer product rating for personalized marketing
    • Cheung, K.-W., Kwok, J. T., Law, M. H., and Tsui, K. C., Mining customer product rating for personalized marketing. Decis. Support Syst. 35:231-243, 2003.
    • (2003) Decis. Support Syst. , vol.35 , pp. 231-243
    • Cheung, K.-W.1    Kwok, J.T.2    Law, M.H.3    Tsui, K.C.4
  • 9
    • 33144480118 scopus 로고    scopus 로고
    • Optimal ensemble construction via meta-evolutionary ensembles
    • DOI 10.1016/j.eswa.2005.07.030, PII S0957417405001673
    • Kim, Y. S., Street, W. N., and Menczer, F., Optimal ensemble construction via meta-evolutionary ensembles. Expert Syst. Appl. 30:705-714, 2006. (Pubitemid 43267430)
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 705-714
    • Kim, Y.1    Street, W.N.2    Menczer, F.3
  • 10
    • 33646163895 scopus 로고    scopus 로고
    • Entropy-based fuzzy rough classification approach for extracting classification rules
    • Tsai, Y. C., Cheng, C. H., and Chang, J. R., Entropy-based fuzzy rough classification approach for extracting classification rules. Expert Syst. Appl. 31(2):436-443, 2006.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 436-443
    • Tsai, Y.C.1    Cheng, C.H.2    Chang, J.R.3
  • 11
    • 2342646229 scopus 로고    scopus 로고
    • Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines
    • Chou, S.-M., Lee, T.-S., Shao, Y. E., and Chen, I.-F., Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 27:133-142, 2004.
    • (2004) Expert Syst. Appl. , vol.27 , pp. 133-142
    • Chou, S.-M.1    Lee, T.-S.2    Shao, Y.E.3    Chen, I.-F.4
  • 12
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R., Diederich, J., and Tickle, A. B., Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8:373-389, 1995.
    • (1995) Knowl.-Based Syst. , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 14
    • 0027678679 scopus 로고
    • The extraction of refined rules from knowledge-based neural networks
    • Towell, G., and Shavlik, J. W., The extraction of refined rules from knowledge-based neural networks. Mach. Learn. 13:71-101, 1993.
    • (1993) Mach. Learn. , vol.13 , pp. 71-101
    • Towell, G.1    Shavlik, J.W.2
  • 16
    • 67349100659 scopus 로고    scopus 로고
    • Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks
    • Lin, S.-W., Shiue, Y.-R., Chen, S.-C., and Cheng, H.-M., Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks. Expert Syst. Appl. 36:11543-11551, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11543-11551
    • Lin, S.-W.1    Shiue, Y.-R.2    Chen, S.-C.3    Cheng, H.-M.4
  • 17
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang, C. L., and Wang, C. J., A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31:231-240, 2006.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 19
    • 2642563714 scopus 로고    scopus 로고
    • Particle swarm based data mining algorithms for classification tasks
    • Sousa, T., Silva, A., and Neves, A., Particle swarm based data mining algorithms for classification tasks. Parallel Comput. 30(5-6):767-783, 2004.
    • (2004) Parallel Comput. , vol.30 , Issue.5-6 , pp. 767-783
    • Sousa, T.1    Silva, A.2    Neves, A.3
  • 21
    • 3142768423 scopus 로고    scopus 로고
    • Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficient
    • Ratnaweera, A., Halgamuge, S. K., and Watoson, H. C., Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficient. IEEE Trans. Evol. Comput. 8 (3):240-255, 2004.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watoson, H.C.3
  • 24
    • 33644947921 scopus 로고    scopus 로고
    • An improved particle swarm optimization based on self-adaptive escape velocity
    • He, R., Wang, Y., et al., An improved particle swarm optimization based on self-adaptive escape velocity. J. Software 16(12):2036-2044, 2005.
    • (2005) J. Software , vol.16 , Issue.12 , pp. 2036-2044
    • He, R.1    Wang, Y.2
  • 25
    • 3142697802 scopus 로고    scopus 로고
    • A cooperative approach to particle swarm optimization
    • Van den Bergh, F., and Engelbrecht, A. P., A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3):225-239, 2004.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 225-239
    • Van Den Bergh, F.1    Engelbrecht, A.P.2
  • 26
    • 84942114552 scopus 로고    scopus 로고
    • Particle swarm optimization with Gaussian mutation
    • Indianapolis: IEEE Inc
    • Higashi, N., and Iba, H., Particle swarm optimization with Gaussian mutation. Proceedings of the IEEE Swarm Intelligence Symp. Indianapolis: IEEE Inc, 72-79, 2003.
    • (2003) Proceedings of the IEEE Swarm Intelligence Symp , pp. 72-79
    • Higashi, N.1    Iba, H.2
  • 27
    • 0031352450 scopus 로고    scopus 로고
    • A discrete binary version of the particle swarm algorithm, systems, man, and cybernetics
    • Kennedy, J., and Eberhart, R. C., A discrete binary version of the particle swarm algorithm, systems, man, and cybernetics. Comput. Cybern. Simul. IEEE Int. Conf. 5(12-15):4104-4108, 1997.
    • (1997) Comput. Cybern. Simul. IEEE Int. Conf. , vol.5 , Issue.12-15 , pp. 4104-4108
    • Kennedy, J.1    Eberhart, R.C.2
  • 28
    • 26844489388 scopus 로고    scopus 로고
    • Two sub-swarms Particle Swarm Optimization algorithm
    • Advances in Natural Computation: First International Conference, ICNC 2005. Proceedings
    • Chen, G., and Yu, J., Two sub-swarms particle swarm optimization algorithm. Lect. Notes Comput. Sci. 3612:515-524, 2005. (Pubitemid 41449614)
    • (2005) Lecture Notes in Computer Science , vol.3612 , Issue.PART III , pp. 515-524
    • Chen, G.1    Yu, J.2
  • 29
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Shi, Y., and Eberhart, R. C., Parameter selection in particle swarm optimization. Lect. Notes Comput. Sci. 1447/1998:591-600, 1997.
    • (1997) Lect. Notes Comput. Sci. 1447 , vol.1998 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 31
    • 60249099439 scopus 로고    scopus 로고
    • A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
    • Yeh, W.-C., Chang, W.-W., and Chuang, Y. Y., A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method. Expert Syst. Appl. 36:8204-8211, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8204-8211
    • Yeh, W.-C.1    Chang, W.-W.2    Chuang, Y.Y.3
  • 32
    • 9144258054 scopus 로고    scopus 로고
    • A new method to generate fuzzy rules from training instances for handling classification problems
    • Chen, S.-M., and Yu, C.-H., A new method to generate fuzzy rules from training instances for handling classification problems. Cybern. Syst. 34(3):217-232, 2003.
    • (2003) Cybern. Syst. , vol.34 , Issue.3 , pp. 217-232
    • Chen, S.-M.1    Yu, C.-H.2
  • 33
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • Wu, T. P., and Chen, S. M., A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans. Syst. Man Cybern. Part B 29(1):25-40, 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. Part B , vol.29 , Issue.1 , pp. 25-40
    • Wu, T.P.1    Chen, S.M.2
  • 34
    • 0030289773 scopus 로고    scopus 로고
    • Induction of fuzzy rules and membership functions from training examples
    • Hong, T. P., and Lee, C. Y., Induction of fuzzy rules and membership functions from training examples. Fuzzy Sets Syst. 84 (1):34-37, 1996.
    • (1996) Fuzzy Sets Syst. , vol.84 , Issue.1 , pp. 34-37
    • Hong, T.P.1    Lee, C.Y.2
  • 36
    • 33144490480 scopus 로고    scopus 로고
    • A GAs based approach for mining breast cancer pattern
    • DOI 10.1016/j.eswa.2005.07.013, PII S0957417405001557
    • Chen, T.-C., and Hsu, T.-C., A GAs based approach for mining breast cancer pattern. Expert Syst. Appl. 30:674-681, 2006. (Pubitemid 43267427)
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 674-681
    • Chen, T.-C.1    Hsu, T.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.