메뉴 건너뛰기




Volumn 35, Issue 2, 2003, Pages 231-243

Mining customer product ratings for personalized marketing

Author keywords

Latent class model; Personalized marketing; Recommender systems; Support vector machine

Indexed keywords

COMPUTER SUPPORTED COOPERATIVE WORK; CONTENT BASED RETRIEVAL; ELECTRONIC COMMERCE; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKETING; RATING; WORLD WIDE WEB;

EID: 12244294767     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-9236(02)00108-2     Document Type: Article
Times cited : (219)

References (48)
  • 4
    • 0031103679 scopus 로고    scopus 로고
    • Content-based, collaborative recommendation
    • March
    • Balabanović M., Shoham Y. Content-based, collaborative recommendation. Communications of the ACM. 40(3):March 1997;66-72.
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanović, M.1    Shoham, Y.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2(2):1998;955-974.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.J.C.1
  • 12
    • 77952329662 scopus 로고    scopus 로고
    • Data preparation for mining world wide web browsing patterns
    • February
    • Cooley R., Mobasher B., Srivastava J. Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems. 1(1):February 1999;5-32.
    • (1999) Knowledge and Information Systems , vol.1 , Issue.1 , pp. 5-32
    • Cooley, R.1    Mobasher, B.2    Srivastava, J.3
  • 13
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification: A survey
    • Dash M., Liu H. Feature selection for classification: a survey. Intelligent Data Analysis. 1(3):1997.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3
    • Dash, M.1    Liu, H.2
  • 16
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • Domingos P. Unifying instance-based and rule-based induction. Machine Learning. 24:1996;141-168.
    • (1996) Machine Learning , vol.24 , pp. 141-168
    • Domingos, P.1
  • 17
    • 0003087641 scopus 로고    scopus 로고
    • Using SVMs for text categorization
    • Dumais S. Using SVMs for text categorization. IEEE Intelligent Systems. 1998;21-23.
    • (1998) IEEE Intelligent Systems , pp. 21-23
    • Dumais, S.1
  • 19
    • 84976668719 scopus 로고
    • Collaborative filtering to weave an information tapestry
    • December
    • Goldberg D., Nichols D., Oki B.M., Terry D. Collaborative filtering to weave an information tapestry. Communications of the ACM. 35(12):December 1992;61-70.
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 24
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. European Conference on Machine Learning. 1998.
    • (1998) European Conference on Machine Learning
    • Joachims, T.1
  • 25
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf, C. Burges, & A. Smola. Cambridge, MA: MIT Press
    • Joachims T. Making large-scale support vector machine learning practical. Schölkopf B., Burges C., Smola A. Advances in Kernel Methods - Support Vector Learning. 1999;169-184 MIT Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 30
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of support vector machine classifiers
    • Kwok J.T. Moderating the outputs of support vector machine classifiers. IEEE Transactions on Neural Networks. 10:1999;1018-1031.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 1018-1031
    • Kwok, J.T.1
  • 37
    • 12244281258 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-tree
    • December
    • Moore A. Very fast EM-based mixture model clustering using multiresolution kd-tree. Neural Information Systems Processing. December 1998.
    • (1998) Neural Information Systems Processing
    • Moore, A.1
  • 38
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan. Dordrecht: Kluwer Academic Publishing
    • Neal R.M., Hinton G.E. A view of the EM algorithm that justifies incremental, sparse, and other variants. Jordan M.I. Learning in Graphical Models. 1998;355-368 Kluwer Academic Publishing, Dordrecht.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 40
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • Pazzani M.J. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review. 1999.
    • (1999) Artificial Intelligence Review
    • Pazzani, M.J.1
  • 41
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification of interesting web sites
    • Pazzani M., Billsus D. Learning and revising user profiles: the identification of interesting web sites. Machine Learning. 27:1997;313-331.
    • (1997) Machine Learning , vol.27 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.