-
1
-
-
19544370005
-
Using emerging patterns and decision trees in rare-class classification
-
H. Alhammady and K. Ramamohanarao. Using Emerging Patterns and Decision Trees in Rare-Class Classification. ICDM '04: 315-318.
-
ICDM '04
, pp. 315-318
-
-
Alhammady, H.1
Ramamohanarao, K.2
-
2
-
-
1642373967
-
Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery
-
C. F. Aliferis, I. Tsamardinos, A. Statnikov and L.E. Brown. Causal Explorer: a Causal Probabilistic Network Learning Toolkit for Biomedical Discovery. METMBS'03, 2003.
-
(2003)
METMBS'03
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
Brown, L.E.4
-
3
-
-
76749137632
-
Local causal and markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation
-
C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani and X.D. Koutsoukos. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research 11(Jan):171-234, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.JANUARY
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
5
-
-
0011728961
-
The Amount of Information That y Gives about X
-
N.M Blachman. The Amount of Information That y Gives about X. IEEE transactions on Information Theory. 14(1), 27-31,1968.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.1
, pp. 27-31
-
-
Blachman, N.M.1
-
6
-
-
77956540045
-
Causal filter selection in microarray data
-
G. Bontempi and P. E. Meyer. Causal Filter Selection in Microarray Data. ICML'10, 2010.
-
(2010)
ICML'10
-
-
Bontempi, G.1
Meyer, P.E.2
-
7
-
-
35348917347
-
Masquerader detection using oclep: Oneclass classification using length statistics of emerging patterns
-
L. Chen and G. Dong. Masquerader Detection Using Oclep: Oneclass Classification Using Length Statistics of Emerging Patterns. WAIMW'06, 2006.
-
(2006)
WAIMW'06
-
-
Chen, L.1
Dong, G.2
-
8
-
-
34249832377
-
A bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9: 309-347 (1992)
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
10
-
-
0002034653
-
Efficient mining of emerging patterns: Discovering trends and differences
-
G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD'99, 1999.
-
(1999)
KDD'99
-
-
Dong, G.1
Li, J.2
-
11
-
-
35048837125
-
CAEP: Classification by aggregating emerging patterns
-
G. Dong, X. Zhang, L. Wong and J. Li. CAEP: Classification by Aggregating Emerging Patterns. DS'99, 30-42, 1999.
-
(1999)
DS'99
, pp. 30-42
-
-
Dong, G.1
Zhang, X.2
Wong, L.3
Li, J.4
-
12
-
-
33646390384
-
Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers
-
H. Fan and K. Ramamohanarao. Fast Discovery and the Generalization of Strong Jumping Emerging Patterns for Building Compact and Accurate Classifiers. IEEE Transactions on Knowledge and Data Engineering 18(6), 721-737, 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.6
, pp. 721-737
-
-
Fan, H.1
Ramamohanarao, K.2
-
14
-
-
85053374465
-
Making use of the most expressive jumping emerging patterns for classification
-
J. Li, G. Dong and K. Ramamohanarao. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. Knowledge and Information Systems, 3 (2001), 131-145.
-
(2001)
Knowledge and Information Systems
, vol.3
, pp. 131-145
-
-
Li, J.1
Dong, G.2
Ramamohanarao, K.3
-
15
-
-
78149313084
-
CMAR: Accurate and efficient classification based on multiple-class association rule
-
W. Li, J. Han and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple-class Association Rule. ICDM'01, pp. 369-376, 2001.
-
(2001)
ICDM'01
, pp. 369-376
-
-
Li, W.1
Han, J.2
Pei, J.3
-
16
-
-
84948104699
-
Integrating classification and association rule mining
-
B. Liu,W. Hsu and Y. Ma. Integrating Classification and Association Rule Mining. KDD'98, 80-86, 1998.
-
(1998)
KDD'98
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
17
-
-
84863174448
-
Efficiently finding the best parameter for the emerging pattern-based classifier PCL
-
T.S Ngo, M. Feng, G. Liu and L. Wong. Efficiently Finding the Best Parameter for the Emerging Pattern-Based Classifier PCL. PAKDD'10, 2010.
-
(2010)
PAKDD'10
-
-
Ngo, T.S.1
Feng, M.2
Liu, G.3
Wong, L.4
-
19
-
-
33947224036
-
Patterns based classifiers
-
K. Ramamohanarao and H. Fan. Patterns Based Classifiers. World Wide Web 10(1), 71-83 (2007).
-
(2007)
World Wide Web
, vol.10
, Issue.1
, pp. 71-83
-
-
Ramamohanarao, K.1
Fan, H.2
-
22
-
-
0002947110
-
Rule induction using information theory
-
Piatetsky-Shapiro, G. and Frawley, W.J. (eds.). AAAI Press
-
P. Smyth and R.M. Goodman. Rule Induction Using Information Theory. In: Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Discovery in Databases. AAAI Press, pp. 159-176(1991).
-
(1991)
Knowledge Discovery in Databases
, pp. 159-176
-
-
Smyth, P.1
Goodman, R.M.2
-
23
-
-
33746035971
-
The max-min hill-climbing bayesian network structure learning algorithm
-
I. Tsamardinos, L. E. Brown and C. F. Aliferis. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning, 651:31-78, 2006.
-
(2006)
Machine Learning
, vol.651
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
25
-
-
11344262990
-
CPAR: Classification based on predictive association rule
-
X. Yin and J. Han. CPAR: Classification Based on Predictive Association Rule. SDM'03, 369-376, 2003.
-
(2003)
SDM'03
, pp. 369-376
-
-
Yin, X.1
Han, J.2
|