메뉴 건너뛰기




Volumn , Issue , 2011, Pages 914-923

Causal associative classification

Author keywords

Associative classification; Causal bayesian networks; Emerging patterns

Indexed keywords

ASSOCIATIVE CLASSIFICATION; ASSOCIATIVE CLASSIFIERS; CAUSAL BAYESIAN NETWORK; CLASSIFICATION RULES; EMERGING PATTERNS; FEATURE SPACE; HIGH-DIMENSIONAL DATASET; HIGHLY SENSITIVE; MARKOV BLANKETS; MINIMAL SUPPORTS; MODEL COMPLEXITY; PREDICTIVE RULES; REDUNDANT FEATURES; REDUNDANT RULES; STATE-OF-THE-ART ALGORITHMS;

EID: 84863152863     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.30     Document Type: Conference Paper
Times cited : (14)

References (25)
  • 1
    • 19544370005 scopus 로고    scopus 로고
    • Using emerging patterns and decision trees in rare-class classification
    • H. Alhammady and K. Ramamohanarao. Using Emerging Patterns and Decision Trees in Rare-Class Classification. ICDM '04: 315-318.
    • ICDM '04 , pp. 315-318
    • Alhammady, H.1    Ramamohanarao, K.2
  • 2
    • 1642373967 scopus 로고    scopus 로고
    • Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery
    • C. F. Aliferis, I. Tsamardinos, A. Statnikov and L.E. Brown. Causal Explorer: a Causal Probabilistic Network Learning Toolkit for Biomedical Discovery. METMBS'03, 2003.
    • (2003) METMBS'03
    • Aliferis, C.F.1    Tsamardinos, I.2    Statnikov, A.3    Brown, L.E.4
  • 3
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation
    • C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani and X.D. Koutsoukos. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research 11(Jan):171-234, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.JANUARY , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 5
    • 0011728961 scopus 로고
    • The Amount of Information That y Gives about X
    • N.M Blachman. The Amount of Information That y Gives about X. IEEE transactions on Information Theory. 14(1), 27-31,1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 27-31
    • Blachman, N.M.1
  • 6
    • 77956540045 scopus 로고    scopus 로고
    • Causal filter selection in microarray data
    • G. Bontempi and P. E. Meyer. Causal Filter Selection in Microarray Data. ICML'10, 2010.
    • (2010) ICML'10
    • Bontempi, G.1    Meyer, P.E.2
  • 7
    • 35348917347 scopus 로고    scopus 로고
    • Masquerader detection using oclep: Oneclass classification using length statistics of emerging patterns
    • L. Chen and G. Dong. Masquerader Detection Using Oclep: Oneclass Classification Using Length Statistics of Emerging Patterns. WAIMW'06, 2006.
    • (2006) WAIMW'06
    • Chen, L.1    Dong, G.2
  • 8
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9: 309-347 (1992)
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 10
    • 0002034653 scopus 로고    scopus 로고
    • Efficient mining of emerging patterns: Discovering trends and differences
    • G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD'99, 1999.
    • (1999) KDD'99
    • Dong, G.1    Li, J.2
  • 11
    • 35048837125 scopus 로고    scopus 로고
    • CAEP: Classification by aggregating emerging patterns
    • G. Dong, X. Zhang, L. Wong and J. Li. CAEP: Classification by Aggregating Emerging Patterns. DS'99, 30-42, 1999.
    • (1999) DS'99 , pp. 30-42
    • Dong, G.1    Zhang, X.2    Wong, L.3    Li, J.4
  • 12
    • 33646390384 scopus 로고    scopus 로고
    • Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers
    • H. Fan and K. Ramamohanarao. Fast Discovery and the Generalization of Strong Jumping Emerging Patterns for Building Compact and Accurate Classifiers. IEEE Transactions on Knowledge and Data Engineering 18(6), 721-737, 2006.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.6 , pp. 721-737
    • Fan, H.1    Ramamohanarao, K.2
  • 14
    • 85053374465 scopus 로고    scopus 로고
    • Making use of the most expressive jumping emerging patterns for classification
    • J. Li, G. Dong and K. Ramamohanarao. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. Knowledge and Information Systems, 3 (2001), 131-145.
    • (2001) Knowledge and Information Systems , vol.3 , pp. 131-145
    • Li, J.1    Dong, G.2    Ramamohanarao, K.3
  • 15
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple-class association rule
    • W. Li, J. Han and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple-class Association Rule. ICDM'01, pp. 369-376, 2001.
    • (2001) ICDM'01 , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 16
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu,W. Hsu and Y. Ma. Integrating Classification and Association Rule Mining. KDD'98, 80-86, 1998.
    • (1998) KDD'98 , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 17
    • 84863174448 scopus 로고    scopus 로고
    • Efficiently finding the best parameter for the emerging pattern-based classifier PCL
    • T.S Ngo, M. Feng, G. Liu and L. Wong. Efficiently Finding the Best Parameter for the Emerging Pattern-Based Classifier PCL. PAKDD'10, 2010.
    • (2010) PAKDD'10
    • Ngo, T.S.1    Feng, M.2    Liu, G.3    Wong, L.4
  • 19
    • 33947224036 scopus 로고    scopus 로고
    • Patterns based classifiers
    • K. Ramamohanarao and H. Fan. Patterns Based Classifiers. World Wide Web 10(1), 71-83 (2007).
    • (2007) World Wide Web , vol.10 , Issue.1 , pp. 71-83
    • Ramamohanarao, K.1    Fan, H.2
  • 22
    • 0002947110 scopus 로고
    • Rule induction using information theory
    • Piatetsky-Shapiro, G. and Frawley, W.J. (eds.). AAAI Press
    • P. Smyth and R.M. Goodman. Rule Induction Using Information Theory. In: Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Discovery in Databases. AAAI Press, pp. 159-176(1991).
    • (1991) Knowledge Discovery in Databases , pp. 159-176
    • Smyth, P.1    Goodman, R.M.2
  • 23
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown and C. F. Aliferis. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning, 651:31-78, 2006.
    • (2006) Machine Learning , vol.651 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 25
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rule
    • X. Yin and J. Han. CPAR: Classification Based on Predictive Association Rule. SDM'03, 369-376, 2003.
    • (2003) SDM'03 , pp. 369-376
    • Yin, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.