메뉴 건너뛰기




Volumn 32, Issue 1, 2012, Pages 226-239

Autophagy driven by a master regulator of hematopoiesis

Author keywords

[No Author keywords available]

Indexed keywords

GABARAP PROTEIN; GABARAPL1 PROTEIN; GATE 16 PROTEIN; MAP1LC3A PROTEIN; MICROTUBULE ASSOCIATED PROTEIN 1; MICROTUBULE ASSOCIATED PROTEIN 1 LIGHT CHAIN 3B; TRANSCRIPTION FACTOR FKHRL1; TRANSCRIPTION FACTOR GATA 1; UNCLASSIFIED DRUG;

EID: 84863011357     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.06166-11     Document Type: Article
Times cited : (110)

References (58)
  • 1
    • 34248230733 scopus 로고    scopus 로고
    • Differential regulation of Foxo3a target genes in erythropoiesis
    • Bakker WJ, et al. 2007. Differential regulation of Foxo3a target genes in erythropoiesis. Mol. Cell. Biol. 27:3839-3854.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3839-3854
    • Bakker, W.J.1
  • 2
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. 2010. Network organization of the human autophagy system. Nature 466:68-76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 3
    • 77951230100 scopus 로고    scopus 로고
    • Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data
    • Blahnik KR, et al. 2010. Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 38:e13.
    • (2010) Nucleic Acids Res , vol.38
    • Blahnik, K.R.1
  • 5
    • 0030057122 scopus 로고    scopus 로고
    • The transcription factor PU. 1 is involved in macrophage proliferation
    • Celada A, et al. 1996. The transcription factor PU. 1 is involved in macrophage proliferation. J. Exp. Med. 184:61-69.
    • (1996) J. Exp. Med. , vol.184 , pp. 61-69
    • Celada, A.1
  • 6
    • 0033083804 scopus 로고    scopus 로고
    • Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex
    • Crispino JD, Lodish MB, MacKay JP, Orkin SH. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3:219-228.
    • (1999) Mol. Cell , vol.3 , pp. 219-228
    • Crispino, J.D.1    Lodish, M.B.2    MacKay, J.P.3    Orkin, S.H.4
  • 7
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Encode Project Consortium
    • Encode Project Consortium. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799-816.
    • (2007) Nature , vol.447 , pp. 799-816
  • 8
    • 0024417073 scopus 로고
    • The erythroid-specific transcription factor Eryf1: a new finger protein
    • Evans T, Felsenfeld G. 1989. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877-885.
    • (1989) Cell , vol.58 , pp. 877-885
    • Evans, T.1    Felsenfeld, G.2
  • 9
    • 70449675049 scopus 로고    scopus 로고
    • Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy
    • Fujiwara T, et al. 2009. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol. Cell 36:667-681.
    • (2009) Mol. Cell , vol.36 , pp. 667-681
    • Fujiwara, T.1
  • 10
    • 0041806587 scopus 로고    scopus 로고
    • GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling
    • Grass JA, et al. 2003. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. U. S. A. 100:8811-8816.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 8811-8816
    • Grass, J.A.1
  • 11
    • 0033168769 scopus 로고    scopus 로고
    • L expression
    • L expression. Blood 94:87-96.
    • (1999) Blood , vol.94 , pp. 87-96
    • Gregory, T.1
  • 12
    • 0037013877 scopus 로고    scopus 로고
    • Essential and instructive roles of GATA factors in eosinophil development
    • Hirasawa R, et al. 2002. Essential and instructive roles of GATA factors in eosinophil development. J. Exp. Med. 195:1379-1386.
    • (2002) J. Exp. Med. , vol.195 , pp. 1379-1386
    • Hirasawa, R.1
  • 13
    • 3843114956 scopus 로고    scopus 로고
    • Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation
    • Im H, et al. 2004. Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol. Biol. 284:129-146.
    • (2004) Methods Mol. Biol. , vol.284 , pp. 129-146
    • Im, H.1
  • 14
    • 28044437502 scopus 로고    scopus 로고
    • Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region
    • Im H, et al. 2005. Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc. Natl. Acad. Sci. U. S. A. 102:17065-17070.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17065-17070
    • Im, H.1
  • 15
    • 34250021087 scopus 로고    scopus 로고
    • Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function
    • Johnson KD, et al. 2007. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 109:5230-5233.
    • (2007) Blood , vol.109 , pp. 5230-5233
    • Johnson, K.D.1
  • 16
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, et al. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720-5728.
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1
  • 17
    • 3242888703 scopus 로고    scopus 로고
    • LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
    • Kabeya Y, et al. 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117:2805-2812.
    • (2004) J. Cell Sci. , vol.117 , pp. 2805-2812
    • Kabeya, Y.1
  • 18
    • 34250183131 scopus 로고    scopus 로고
    • Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation
    • Kim S-I, Bultman SJ, Jing H, Blobel GA, Bresnick EB. 2007. Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol. Cell. Biol. 27:4551-4565.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 4551-4565
    • Kim, S.-I.1    Bultman, S.J.2    Jing, H.3    Blobel, G.A.4    Bresnick, E.B.5
  • 19
    • 51649124519 scopus 로고    scopus 로고
    • Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
    • Kundu M, et al. 2008. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112:1493-1502.
    • (2008) Blood , vol.112 , pp. 1493-1502
    • Kundu, M.1
  • 20
    • 72149086961 scopus 로고    scopus 로고
    • Controlling hematopoiesis through sumoylationdependent regulation of a GATA factor
    • Lee HY, et al. 2009. Controlling hematopoiesis through sumoylationdependent regulation of a GATA factor. Mol. Cell 36:984-995.
    • (2009) Mol. Cell , vol.36 , pp. 984-995
    • Lee, H.Y.1
  • 21
    • 79956304003 scopus 로고    scopus 로고
    • Relocalizing genetic loci into specific subnuclear neighborhoods
    • Lee HY, Johnson KD, Boyer ME, Bresnick EH. 2011. Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286:18834-18844.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18834-18844
    • Lee, H.Y.1    Johnson, K.D.2    Boyer, M.E.3    Bresnick, E.H.4
  • 22
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323-335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 23
    • 77951243028 scopus 로고    scopus 로고
    • Autophagy regulation by p53
    • Maiuri MC, et al. 2010. Autophagy regulation by p53. Curr. Opin. Cell Biol. 22:181-185.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 181-185
    • Maiuri, M.C.1
  • 24
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C, et al. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6:458-471.
    • (2007) Cell Metab , vol.6 , pp. 458-471
    • Mammucari, C.1
  • 25
    • 34547699517 scopus 로고    scopus 로고
    • FoxO3 is required for the regulation of oxidative stress in erythropoiesis
    • Marinkovic D, et al. 2007. FoxO3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Invest. 117:2133-2144.
    • (2007) J. Clin. Invest. , vol.117 , pp. 2133-2144
    • Marinkovic, D.1
  • 26
    • 79953721660 scopus 로고    scopus 로고
    • Global gene expression analysis of human erythroid progenitors
    • Merryweather-Clarke AT, et al. 2011. Global gene expression analysis of human erythroid progenitors. Blood 117:e96-e108.
    • (2011) Blood , vol.117
    • Merryweather-Clarke, A.T.1
  • 27
    • 0037415557 scopus 로고    scopus 로고
    • GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant
    • Migliaccio AR, et al. 2003. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J. Exp. Med. 197:281-296.
    • (2003) J. Exp. Med. , vol.197 , pp. 281-296
    • Migliaccio, A.R.1
  • 28
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: process and function
    • Mizushima N. 2007. Autophagy: process and function. Genes Dev. 21:2861-2873.
    • (2007) Genes Dev , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 29
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima N, Levine B. 2010. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12:823-830.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 30
    • 35848967804 scopus 로고    scopus 로고
    • How to interpret LC3 immunoblotting
    • Mizushima N, Yoshimori T. 2007. How to interpret LC3 immunoblotting. Autophagy 3:542-545.
    • (2007) Autophagy , vol.3 , pp. 542-545
    • Mizushima, N.1    Yoshimori, T.2
  • 31
    • 76249127368 scopus 로고    scopus 로고
    • Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo
    • Mortensen M, et al. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. U. S. A. 107:832-837.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 832-837
    • Mortensen, M.1
  • 32
    • 77957961816 scopus 로고    scopus 로고
    • Using ChIP-seq technology to identify targets of zinc finger transcription factors
    • O'Geen H, Frietze S, Farnham PJ. 2010. Using ChIP-seq technology to identify targets of zinc finger transcription factors. Methods Mol. Biol. 649:437-455.
    • (2010) Methods Mol. Biol. , vol.649 , pp. 437-455
    • O'Geen, H.1    Frietze, S.2    Farnham, P.J.3
  • 33
    • 3843147337 scopus 로고    scopus 로고
    • Neurokinin-B transcription in erythroid cells: direct activation by the hematopoietic transcription factor GATA-1
    • Pal S, et al. 2004. Neurokinin-B transcription in erythroid cells: direct activation by the hematopoietic transcription factor GATA-1. J. Biol. Chem. 279:31348-31356.
    • (2004) J. Biol. Chem. , vol.279 , pp. 31348-31356
    • Pal, S.1
  • 34
    • 0025977563 scopus 로고
    • Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1
    • Pevny L, et al. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257-260.
    • (1991) Nature , vol.349 , pp. 257-260
    • Pevny, L.1
  • 35
    • 49649121765 scopus 로고    scopus 로고
    • E2F1 regulates autophagy and the transcription of autophagy genes
    • Polager S, Ofir M, Ginsberg D. 2008. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27:4860-4864.
    • (2008) Oncogene , vol.27 , pp. 4860-4864
    • Polager, S.1    Ofir, M.2    Ginsberg, D.3
  • 36
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-1348.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 37
    • 77955467319 scopus 로고    scopus 로고
    • Regulation of autophagy by ATF4 in response to severe hypoxia
    • Rzymski T, et al. 2010. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424-4435.
    • (2010) Oncogene , vol.29 , pp. 4424-4435
    • Rzymski, T.1
  • 38
    • 69249227502 scopus 로고    scopus 로고
    • Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function
    • Saftig P, Klumperman J. 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10:623-635.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 623-635
    • Saftig, P.1    Klumperman, J.2
  • 39
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for Nix in autophagic maturation of erythroid cells
    • Sandoval H, et al. 2008. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232-235.
    • (2008) Nature , vol.454 , pp. 232-235
    • Sandoval, H.1
  • 40
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello M, et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473-477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 41
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • Schweers RL, et al. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. U. S. A. 104:19500-19505.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19500-19505
    • Schweers, R.L.1
  • 42
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 43
    • 0026865123 scopus 로고
    • - mouse embryonic stem cells
    • - mouse embryonic stem cells. Nat. Genet. 1:92-98.
    • (1992) Nat. Genet. , vol.1 , pp. 92-98
    • Simon, M.C.1
  • 44
    • 4344604111 scopus 로고    scopus 로고
    • HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptorassociated protein-phospholipid conjugates
    • Tanida I, et al. 2004. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptorassociated protein-phospholipid conjugates. J. Biol. Chem. 279:36268-36276.
    • (2004) J. Biol. Chem. , vol.279 , pp. 36268-36276
    • Tanida, I.1
  • 45
    • 0024373139 scopus 로고
    • Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells
    • Tsai SF, et al. 1989. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339:446-451.
    • (1989) Nature , vol.339 , pp. 446-451
    • Tsai, S.F.1
  • 46
    • 0032522474 scopus 로고    scopus 로고
    • Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG
    • Tsang AP, Fujiwara Y, Hom DB, Orkin SH. 1998. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12:1176-1188.
    • (1998) Genes Dev , vol.12 , pp. 1176-1188
    • Tsang, A.P.1    Fujiwara, Y.2    Hom, D.B.3    Orkin, S.H.4
  • 47
    • 0031472234 scopus 로고    scopus 로고
    • FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation
    • Tsang AP, et al. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109-119.
    • (1997) Cell , vol.90 , pp. 109-119
    • Tsang, A.P.1
  • 48
    • 0033134831 scopus 로고    scopus 로고
    • Consequences of GATA-1 deficiency in megakaryocytes and platelets
    • Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. 1999. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93:2867-2875.
    • (1999) Blood , vol.93 , pp. 2867-2875
    • Vyas, P.1    Ault, K.2    Jackson, C.W.3    Orkin, S.H.4    Shivdasani, R.A.5
  • 49
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H, et al. 2010. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-1802.
    • (2010) EMBO J , vol.29 , pp. 1792-1802
    • Weidberg, H.1
  • 50
    • 0028233760 scopus 로고
    • Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells
    • Weiss MJ, Keller G, Orkin SH. 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8:1184-1197.
    • (1994) Genes Dev , vol.8 , pp. 1184-1197
    • Weiss, M.J.1    Keller, G.2    Orkin, S.H.3
  • 51
    • 0031024994 scopus 로고    scopus 로고
    • Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a genetargeted cell line
    • Weiss MJ, Yu C, Orkin SH. 1997. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a genetargeted cell line. Mol. Cell. Biol. 17:1642-1651.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 1642-1651
    • Weiss, M.J.1    Yu, C.2    Orkin, S.H.3
  • 52
    • 8644228649 scopus 로고    scopus 로고
    • Global regulation of erythroid gene expression by transcription factor GATA-1
    • Welch JJ, et al. 2004. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104:3136-3147.
    • (2004) Blood , vol.104 , pp. 3136-3147
    • Welch, J.J.1
  • 53
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-1109.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 54
    • 0037013924 scopus 로고    scopus 로고
    • Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo
    • Yu C, et al. 2002. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195:1387-1395.
    • (2002) J. Exp. Med. , vol.195 , pp. 1387-1395
    • Yu, C.1
  • 55
    • 77955877430 scopus 로고    scopus 로고
    • miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta
    • Yu D, et al. 2010. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 24:1620-1633.
    • (2010) Genes Dev , vol.24 , pp. 1620-1633
    • Yu, D.1
  • 56
    • 70449638281 scopus 로고    scopus 로고
    • Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis
    • Yu M, et al. 2009. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol. Cell 36:682-695.
    • (2009) Mol. Cell , vol.36 , pp. 682-695
    • Yu, M.1
  • 57
    • 67650230871 scopus 로고    scopus 로고
    • Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation
    • Zhang J, et al. 2009. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114:157-164.
    • (2009) Blood , vol.114 , pp. 157-164
    • Zhang, J.1
  • 58
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J, et al. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6:472-483.
    • (2007) Cell Metab , vol.6 , pp. 472-483
    • Zhao, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.