메뉴 건너뛰기




Volumn 6, Issue 1, 2012, Pages 95-108

Machine learning for predictive management: Short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks

Author keywords

Biomass; Genetic algorithm; Management; Nakdong river; Sensitivity analysis; Time series prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOLOGICAL ANALYSIS; BIOMASS; CHLOROPHYLL A; DIATOM; ECOLOGICAL MODELING; GENETIC ALGORITHM; PHYSICOCHEMICAL PROPERTY; PHYTOPLANKTON; PREDICTION; RIVER WATER; SENSITIVITY ANALYSIS; SMOOTHING; TIME SERIES ANALYSIS;

EID: 84862965642     PISSN: 17356865     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (24)

References (72)
  • 2
    • 0002493365 scopus 로고    scopus 로고
    • Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks
    • (In S. Lek and J.F. Guegan (Eds.), Berlin: Springer
    • Chon, T. S., Park, Y. S. and Cha, E. Y. (2000). Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks. (In S. Lek and J.F. Guegan (Eds.), Artificial Neuronal Networks: Application to ecology and evolution. (pp. 99-114). Berlin: Springer.)
    • (2000) Artificial Neuronal Networks: Application to Ecology and Evolution , pp. 99-114
    • Chon, T.S.1    Park, Y.S.2    Cha, E.Y.3
  • 3
    • 0030426363 scopus 로고    scopus 로고
    • Patterning communities by using an artificial neural network
    • Chon, T. S., Park, Y. S., Moon, K. H. and Cha, E. Y. (1996). Patterning communities by using an artificial neural network. Ecological Modelling, 90, 69-78.
    • (1996) Ecological Modelling , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 4
    • 35348858027 scopus 로고    scopus 로고
    • Forecasting Thailand's rice export: Statistical techniques vs. artificial neural networks
    • Co, H. C. and Boosarawongse, R. (2007). Forecasting Thailand's rice export: Statistical techniques vs. artificial neural networks. Computers and Industrial Engineering, 53 (4), 610-627.
    • (2007) Computers and Industrial Engineering , vol.53 , Issue.4 , pp. 610-627
    • Co, H.C.1    Boosarawongse, R.2
  • 5
    • 33751318064 scopus 로고    scopus 로고
    • Neural networks and seasonality: Some technical considerations
    • Curry, B. (2007). Neural networks and seasonality: Some technical considerations. European Journal of Operational Research, 179 (1), 267-274.
    • (2007) European Journal of Operational Research , vol.179 , Issue.1 , pp. 267-274
    • Curry, B.1
  • 6
    • 0002971818 scopus 로고
    • Crustacea, Copepoda, Calanoida und Cyclopoida
    • Stuttgart: Gustav Fisher Verlag
    • Einsle, U. (1993). Crustacea, Copepoda, Calanoida und Cyclopoida. Süßwasserfauna von Mitteleuropa. (Stuttgart: Gustav Fisher Verlag).
    • (1993) Süßwasserfauna Von Mitteleuropa
    • Einsle, U.1
  • 7
    • 0002618854 scopus 로고    scopus 로고
    • An introduction to machine learning methods
    • (In A. Fielding (Ed.), Massachusetts: Kluwer Academic Publishers
    • Fielding, A. (1999). An introduction to machine learning methods. (In A. Fielding (Ed.), Machine Learning Methods for Ecological Applications. (pp. 1-35). Massachusetts: Kluwer Academic Publishers.)
    • (1999) Machine Learning Methods For Ecological Applications , pp. 1-35
    • Fielding, A.1
  • 8
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • Franses, P. H. and Draisma, G. (1997). Recognizing changing seasonal patterns using artificial neural networks. Journal of Econometrics, 81 (1), 273-280.
    • (1997) Journal of Econometrics , vol.81 , Issue.1 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 9
    • 0000957843 scopus 로고    scopus 로고
    • Non-linear prediction of security returns with moving average rules
    • Gençay, R. (1996). Non-linear prediction of security returns with moving average rules. Journal of Forecasting, 15 (3), 165-174.
    • (1996) Journal of Forecasting , vol.15 , Issue.3 , pp. 165-174
    • Gençay, R.1
  • 10
    • 36148938321 scopus 로고    scopus 로고
    • Applications of artificial neural networks predicting macroinvertebrates in freshwaters
    • Goethals, P. L. M., Dedecker, A. P., Gabriels, W., Lek, S. and Pauw, N. D. (2007). Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41 (3), 491-508.
    • (2007) Aquatic Ecology , vol.41 , Issue.3 , pp. 491-508
    • Goethals, P.L.M.1    Dedecker, A.P.2    Gabriels, W.3    Lek, S.4    Pauw, N.D.5
  • 11
    • 7344234236 scopus 로고    scopus 로고
    • Grazing by large river zooplankton: A key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995
    • Gosselain, V., Descy, J.-P., Viroux, L., Joaquim-Justo, C., Hammer, A., Métens, A. and Schweitzer, S. (1998). Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia, 369/370, 199-216.
    • (1998) Hydrobiologia , vol.369-370 , pp. 199-216
    • Gosselain, V.1    Descy, J.-P.2    Viroux, L.3    Joaquim-Justo, C.4    Hammer, A.5    Métens, A.6    Schweitzer, S.7
  • 12
    • 0033050280 scopus 로고    scopus 로고
    • Microcystis bloom formation in the lower Nakdong River, South Korea: Importance of hydrodynamics and nutrient loading
    • Ha, K., Cho, E.-A., Kim, H.-W. and Joo, G.-J. (1999). Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Marine and Freshwater Research, 50, 89-94.
    • (1999) Marine and Freshwater Research , vol.50 , pp. 89-94
    • Ha, K.1    Cho, E.-A.2    Kim, H.-W.3    Joo, G.-J.4
  • 13
    • 0347122969 scopus 로고    scopus 로고
    • Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries
    • Ha, K., Jang, M.-H. and Joo, G.-J. (2003). Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia, 506/509, 221-227.
    • (2003) Hydrobiologia , vol.506-509 , pp. 221-227
    • Ha, K.1    Jang, M.-H.2    Joo, G.-J.3
  • 14
    • 0348093741 scopus 로고    scopus 로고
    • Role of silica in phytoplankton succession: An enclosure experiment in the downstream Nakdong River (Mulgum)
    • Ha, K. and Joo, G.-J. (2000). Role of silica in phytoplankton succession: an enclosure experiment in the downstream Nakdong River (Mulgum), Korean Journal of Ecology, 23 (4), 299-307.
    • (2000) Korean Journal of Ecology , vol.23 , Issue.4 , pp. 299-307
    • Ha, K.1    Joo, G.-J.2
  • 15
    • 0013367168 scopus 로고    scopus 로고
    • Vertical distribution of Microcystis population in the regulated Nakdong River, Korea
    • Ha, K., Kim, H.-W., Jeong, K.-S. and Joo, G.-J. (2000). Vertical distribution of Microcystis population in the regulated Nakdong River, Korea, Limnology, 1, 225-230.
    • (2000) Limnology , vol.1 , pp. 225-230
    • Ha, K.1    Kim, H.-W.2    Jeong, K.-S.3    Joo, G.-J.4
  • 16
    • 0043244737 scopus 로고    scopus 로고
    • The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea
    • Ha, K., Kim, H. W. and Joo, G. J. (1998). The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia, 370, 217-227.
    • (1998) Hydrobiologia , vol.370 , pp. 217-227
    • Ha, K.1    Kim, H.W.2    Joo, G.J.3
  • 17
    • 1842301157 scopus 로고    scopus 로고
    • Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994
    • Harding, L. W. and Perry, E. S. (1997). Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994. Marine Ecology Progress Series, 157, 39-52.
    • (1997) Marine Ecology Progress Series , vol.157 , pp. 39-52
    • Harding, L.W.1    Perry, E.S.2
  • 18
  • 19
    • 0037061422 scopus 로고    scopus 로고
    • A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction
    • Ho, S. L., Xie, M. and Goh, T. N. (2002). A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction. Computers and Industrial Engineering, 42 (2-4), 371-375.
    • (2002) Computers and Industrial Engineering , vol.42 , Issue.2-4 , pp. 371-375
    • Ho, S.L.1    Xie, M.2    Goh, T.N.3
  • 20
    • 0036027497 scopus 로고    scopus 로고
    • Neural network modeling of salinity variation in Apalachicola River
    • Huang, W. and Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36, 356-362.
    • (2002) Water Research , vol.36 , pp. 356-362
    • Huang, W.1    Foo, S.2
  • 22
    • 0035669752 scopus 로고    scopus 로고
    • Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network
    • Jeong, K.-S., Joo, G.-J., Kim, H.-W., Ha, K. and Recknagel, F. (2001). Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecological Modelling, 146, 115-129.
    • (2001) Ecological Modelling , vol.146 , pp. 115-129
    • Jeong, K.-S.1    Joo, G.-J.2    Kim, H.-W.3    Ha, K.4    Recknagel, F.5
  • 23
    • 33751004040 scopus 로고    scopus 로고
    • Machine learning application to the Korean freshwater ecosystems
    • Jeong, K.-S., Kim, D.-K., Chon, T.-S. and Joo, G.-J. (2005). Machine learning application to the Korean freshwater ecosystems. Korean Journal of Ecology, 28 (6), 405-415.
    • (2005) Korean Journal of Ecology , vol.28 , Issue.6 , pp. 405-415
    • Jeong, K.-S.1    Kim, D.-K.2    Chon, T.-S.3    Joo, G.-J.4
  • 24
    • 33751009634 scopus 로고    scopus 로고
    • River phytoplankton prediction model by Artificial Neural Network: Model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system
    • Jeong, K.-S., Kim, D.-K. and Joo, G.-J. (2006a). River phytoplankton prediction model by Artificial Neural Network: Model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. Ecological Informatics, 1 (3), 235-245.
    • (2006) Ecological Informatics , vol.1 , Issue.3 , pp. 235-245
    • Jeong, K.-S.1    Kim, D.-K.2    Joo, G.-J.3
  • 25
    • 33847213214 scopus 로고    scopus 로고
    • Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea)
    • Jeong, K.-S., Kim, D.-K. and Joo, G.-J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research, 41 (6), 1269-1279.
    • (2007) Water Research , vol.41 , Issue.6 , pp. 1269-1279
    • Jeong, K.-S.1    Kim, D.-K.2    Joo, G.-J.3
  • 26
    • 38349159579 scopus 로고    scopus 로고
    • Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics
    • Jeong, K.-S., Kim, D.-K., Jung, J.-M., Kim, M.-C. and Joo, G.-J. (2008). Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecological Modelling, 211(3-4), 292-300.
    • (2008) Ecological Modelling , vol.211 , Issue.3-4 , pp. 292-300
    • Jeong, K.-S.1    Kim, D.-K.2    Jung, J.-M.3    Kim, M.-C.4    Joo, G.-J.5
  • 27
    • 0037370352 scopus 로고    scopus 로고
    • Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach
    • Jeong, K.-S., Kim, D.-K., Whigham, P. and Joo, G.-J. (2003). Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach, Ecological Modelling, 161, 67-78.
    • (2003) Ecological Modelling , vol.161 , pp. 67-78
    • Jeong, K.-S.1    Kim, D.-K.2    Whigham, P.3    Joo, G.-J.4
  • 28
    • 84895250447 scopus 로고    scopus 로고
    • Prediction and Elucidation of Population Dynamics of a Blue-green Algae (Microcystis aeruginosa) and Diatom (Stephanodiscus hantzschii) in the Nakdong River-Reservoir System (South Korea) by Artificial Neural Networks
    • In F. Recknagel (Ed., Berlin: Springer
    • Jeong, K.-S., Recknagel, F. and Joo, G.-J. (2006b). Prediction and Elucidation of Population Dynamics of a Blue-green Algae (Microcystis aeruginosa) and Diatom (Stephanodiscus hantzschii) in the Nakdong River-Reservoir System (South Korea) by Artificial Neural Networks. (In F. Recknagel (Ed.), Ecological Informatics: Scope, Techniques and Applications. (pp. 255-273). Berlin: Springer.)
    • (2006) Ecological Informatics: Scope, Techniques and Applications , pp. 255-273
    • Jeong, K.-S.1    Recknagel, F.2    Joo, G.-J.3
  • 29
    • 84895387892 scopus 로고    scopus 로고
    • Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM)
    • (In S. Lek and M. Scardi and P.F.M. Verdonschot and J.-P. Descy and Y.-S. Park (Eds.), Berlin: Springer
    • Joo, G.-J. and Jeong, K.-S. (2005). Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM). (In S. Lek and M. Scardi and P.F.M. Verdonschot and J.-P. Descy and Y.-S. Park (Eds.), Modelling Community Structure in Freshwater Ecosystems. (pp. 273-287). Berlin: Springer.)
    • (2005) Modelling Community Structure In Freshwater Ecosystems , pp. 273-287
    • Joo, G.-J.1    Jeong, K.-S.2
  • 30
    • 0001613033 scopus 로고    scopus 로고
    • Long-term trend of the eutrophication of the lower Nakdong River
    • Joo, G.-J., Kim, H.-W., Ha, K. and Kim, J.-K. (1997). Long-term trend of the eutrophication of the lower Nakdong River, Korean Journal of Limnology, 30 (supplement), 472-480.
    • (1997) Korean Journal of Limnology , vol.30 , Issue.SUPPL. , pp. 472-480
    • Joo, G.-J.1    Kim, H.-W.2    Ha, K.3    Kim, J.-K.4
  • 31
    • 3542994517 scopus 로고    scopus 로고
    • Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neual networks
    • Joy, M. K. and Death, R. G. (2004). Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neual networks, Freshwater Biology, 49, 1036-1052.
    • (2004) Freshwater Biology , vol.49 , pp. 1036-1052
    • Joy, M.K.1    Death, R.G.2
  • 32
    • 34548487954 scopus 로고    scopus 로고
    • Winter diatom blooms in a regulated river in South Korea: Explanations based on evolutionary computation
    • Kim, D.-K., Jeong, K.-S., Whigham, P. A. and Joo, G.-J. (2007). Winter diatom blooms in a regulated river in South Korea: explanations based on evolutionary computation. Freshwater Biology, 52 (10), 2021-2041.
    • (2007) Freshwater Biology , vol.52 , Issue.10 , pp. 2021-2041
    • Kim, D.-K.1    Jeong, K.-S.2    Whigham, P.A.3    Joo, G.-J.4
  • 33
    • 0033864492 scopus 로고    scopus 로고
    • Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea)
    • Kim, H.-W., Hwang, S.-J. and Joo, G.-J. (2000). Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). Journal of Plankton Research, 22, 1559-1577.
    • (2000) Journal of Plankton Research , vol.22 , pp. 1559-1577
    • Kim, H.-W.1    Hwang, S.-J.2    Joo, G.-J.3
  • 36
    • 0004145533 scopus 로고    scopus 로고
    • New York: Oxford University Press Inc
    • Lampert, W. and Sommer, U. (2007). Limnoecology. (New York: Oxford University Press Inc.)
    • (2007) Limnoecology
    • Lampert, W.1    Sommer, U.2
  • 38
    • 84862940020 scopus 로고    scopus 로고
    • Water quality simulation at Mulgeum station (Nakdong River) using zooplankton community data
    • Lee, S., Choi, J.-M. and Jeong, K.-S. (2009). Water quality simulation at Mulgeum station (Nakdong River) using zooplankton community data. Journal of Korean Society of Water Quality, 25 (6), 832-839.
    • (2009) Journal of Korean Society of Water Quality , vol.25 , Issue.6 , pp. 832-839
    • Lee, S.1    Choi, J.-M.2    Jeong, K.-S.3
  • 40
  • 41
    • 70350165286 scopus 로고    scopus 로고
    • Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan
    • Liang, Y. H. (2009). Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan. Neural Computing and Applications, 18 (7), 833-841.
    • (2009) Neural Computing and Applications , vol.18 , Issue.7 , pp. 833-841
    • Liang, Y.H.1
  • 43
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15, 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 44
    • 0035669543 scopus 로고    scopus 로고
    • Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models
    • Maier, H. R., Sayed, T. and Lence, B. J. (2001). Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models. Ecological Modelling, 146, 85-96.
    • (2001) Ecological Modelling , vol.146 , pp. 85-96
    • Maier, H.R.1    Sayed, T.2    Lence, B.J.3
  • 45
    • 33645529940 scopus 로고    scopus 로고
    • Neural net modeling of estuarine indicators: Hindcasting phytoplankton biomass and net ecosystem production in the Neuse (North Carolina) and Trout (Florida) Rivers, USA
    • Millie, D. F., Weckman, G. R., Paerl, H. W., Pinckney, J. L., Bendis, B. J., Pigg, R. J. and Fahnenstiel, G. L. (2006). Neural net modeling of estuarine indicators: Hindcasting phytoplankton biomass and net ecosystem production in the Neuse (North Carolina) and Trout (Florida) Rivers, USA. Ecological Indicators, 6, 589-608.
    • (2006) Ecological Indicators , vol.6 , pp. 589-608
    • Millie, D.F.1    Weckman, G.R.2    Paerl, H.W.3    Pinckney, J.L.4    Bendis, B.J.5    Pigg, R.J.6    Fahnenstiel, G.L.7
  • 48
    • 0032469449 scopus 로고    scopus 로고
    • Effects of a rivermouth barrage on planktonic algal development in the lower Nagara river, central Japan
    • Murakami, T., Kuroda, N. and Tanaka, T. (1998). Effects of a rivermouth barrage on planktonic algal development in the lower Nagara river, central Japan, Japanese Journal of Limnology, 59 (3), 251-262.
    • (1998) Japanese Journal of Limnology , vol.59 , Issue.3 , pp. 251-262
    • Murakami, T.1    Kuroda, N.2    Tanaka, T.3
  • 49
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: Should the data be deseasonalized first?
    • Nelson, M., Hill, T., Remus, W. and O'connor, M. (1999). Time series forecasting using neural networks: Should the data be deseasonalized first?, Journal of Forecasting, 18 (5), 359-367.
    • (1999) Journal of Forecasting , vol.18 , Issue.5 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3    O'Connor, M.4
  • 50
    • 34047223140 scopus 로고    scopus 로고
    • Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks
    • Oh, H.-M., Ahn, C.-Y., Lee, J.-W., Chon, T.-S., Choi, K. H. and Park, Y.-S. (2007). Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecological Modelling, 203 (1-2), 109-118.
    • (2007) Ecological Modelling , vol.203 , Issue.1-2 , pp. 109-118
    • Oh, H.-M.1    Ahn, C.-Y.2    Lee, J.-W.3    Chon, T.-S.4    Choi, K.H.5    Park, Y.-S.6
  • 51
    • 0037884965 scopus 로고    scopus 로고
    • A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
    • Papale, D. and Valentini, R. (2003). A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 9 (4), 525-535.
    • (2003) Global Change Biology , vol.9 , Issue.4 , pp. 525-535
    • Papale, D.1    Valentini, R.2
  • 53
    • 33646851953 scopus 로고    scopus 로고
    • Unravelling and forecasting algal population dynamics in two lakes different in morphometry and eutrophication by neural and evolutionary computation
    • Recknagel, F., Cao, H., Kim, B., Takamura, N. and Welk, A. (2006a). Unravelling and forecasting algal population dynamics in two lakes different in morphometry and eutrophication by neural and evolutionary computation. Ecological Informatics, 1 (2), 133-151.
    • (2006) Ecological Informatics , vol.1 , Issue.2 , pp. 133-151
    • Recknagel, F.1    Cao, H.2    Kim, B.3    Takamura, N.4    Welk, A.5
  • 54
    • 33750146381 scopus 로고    scopus 로고
    • Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks
    • Recknagel, F., Talib, A. and Van Der Molen, D. (2006b). Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks. Ecological Informatics, 1 (3), 277-285.
    • (2006) Ecological Informatics , vol.1 , Issue.3 , pp. 277-285
    • Recknagel, F.1    Talib, A.2    van der Molen, D.3
  • 55
    • 0001533813 scopus 로고
    • Algae
    • In P. Calow and G.E. Petts (Eds, Oxford: Blackwell Scientific Publication
    • Reynolds, C. S. (1992). Algae. (In P. Calow and G.E. Petts (Eds.), The River Handbook: Hydrological and Ecological Principles. (pp. 195-215). Oxford: Blackwell Scientific Publication.)
    • (1992) The River Handbook: Hydrological and Ecological Principles , pp. 195-215
    • Reynolds, C.S.1
  • 56
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by backpropagation errors. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 57
    • 21044446809 scopus 로고    scopus 로고
    • Application of a degree-day snow depth model to a Swiss glacierised catchment to improve neural network discharge forecasts
    • Schumann, G. and Lauener, G. (2005). Application of a degree-day snow depth model to a Swiss glacierised catchment to improve neural network discharge forecasts. Nordic Hydrology, 36 (2), 99-111.
    • (2005) Nordic Hydrology , vol.36 , Issue.2 , pp. 99-111
    • Schumann, G.1    Lauener, G.2
  • 60
    • 36549022027 scopus 로고    scopus 로고
    • Tourism demand modelling and forecasting - A review of Recent research
    • Song, H. and Li, G. (2008). Tourism demand modelling and forecasting - A review of Recent research. Tourism Management, 29 (2), 203-220.
    • (2008) Tourism Management , vol.29 , Issue.2 , pp. 203-220
    • Song, H.1    Li, G.2
  • 62
    • 0035677369 scopus 로고    scopus 로고
    • Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA
    • Walter, M., Recknagel, F., Carpenter, C. and Bormans, M. (2001). Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA. Ecological Modelling, 146 (1-3), 97-113.
    • (2001) Ecological Modelling , vol.146 , Issue.1-3 , pp. 97-113
    • Walter, M.1    Recknagel, F.2    Carpenter, C.3    Bormans, M.4
  • 63
    • 33749011441 scopus 로고    scopus 로고
    • A seasonal GRBF network for nonstationary time series prediction
    • Wang, H., Wang, J. P. and Tian, W. F. (2006). A seasonal GRBF network for nonstationary time series prediction. Measurement Science and Technology, 17 (10), 2806-2810.
    • (2006) Measurement Science and Technology , vol.17 , Issue.10 , pp. 2806-2810
    • Wang, H.1    Wang, J.P.2    Tian, W.F.3
  • 64
    • 0003826796 scopus 로고
    • Philadelphia: Saunders College Publishing
    • Wetzel, R. G. (1983). Limnology. (Philadelphia: Saunders College Publishing)
    • (1983) Limnology
    • Wetzel, R.G.1
  • 66
    • 0035669859 scopus 로고    scopus 로고
    • Predicting chlorophyll-a in freshwater lakes by hybridising process based models and genetic algorithms
    • Whigham, P. A. and Recknagel, F. (2001). Predicting chlorophyll-a in freshwater lakes by hybridising process based models and genetic algorithms. Ecological Modelling,146, 243-251.
    • (2001) Ecological Modelling , vol.146 , pp. 243-251
    • Whigham, P.A.1    Recknagel, F.2
  • 67
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C. L., Chau, K. W. and Li, Y. S. (2009). Methods to improve neural network performance in daily flows prediction. Journal of Hydrology,372 (1-4), 80-93.
    • (2009) Journal of Hydrology , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 68
    • 0033362601 scopus 로고    scopus 로고
    • Evolving Artificial Neural Networks
    • Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87, 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 69
    • 84862941526 scopus 로고    scopus 로고
    • Paper presneted at Fourth International Conference on Computational Intelligence and Multimedia Applications Yokusika City, Japan
    • Yao, X. and Liu, Y. (2001). Evolving neural networks for chlorophyll-a prediction. (Paper presneted at Fourth International Conference on Computational Intelligence and Multimedia Applications Yokusika City, Japan).
    • (2001) Evolving Neural Networks For Chlorophyll-a Prediction
    • Yao, X.1    Liu, Y.2
  • 70
    • 79551510222 scopus 로고    scopus 로고
    • Statistical analysis of factors affecting the Han River water quality
    • Yoo, H.-S. (2002). Statistical analysis of factors affecting the Han River water quality. Journal of Korean Society of Environmental Engineers, 24 (12), 2139-2150.
    • (2002) Journal of Korean Society of Environmental Engineers , vol.24 , Issue.12 , pp. 2139-2150
    • Yoo, H.-S.1
  • 71
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time-series forecasting with neural networks
    • Zhang, G. P. and Kline, D. M. (2007). Quarterly time-series forecasting with neural networks. IEEE Transactions on Neural Networks, 18 (6), 1800-1814.
    • (2007) IEEE Transactions On Neural Networks , vol.18 , Issue.6 , pp. 1800-1814
    • Zhang, G.P.1    Kline, D.M.2
  • 72
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G. P. and Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160 (2), 501-514.
    • (2005) European Journal of Operational Research , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.