메뉴 건너뛰기




Volumn 53, Issue 4, 2007, Pages 610-627

Forecasting Thailand's rice export: Statistical techniques vs. artificial neural networks

Author keywords

Artificial neural network; Box Jenkins; Forecasting; Holt Winters; Time series analysis

Indexed keywords

AGRICULTURE; ERROR ANALYSIS; FORECASTING; METEOROLOGY; SUPPLY CHAIN MANAGEMENT; TIME SERIES ANALYSIS;

EID: 35348858027     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2007.06.005     Document Type: Article
Times cited : (97)

References (53)
  • 1
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods
    • Alon I., Qi M., and Sadowski R.J. Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods. Journal of Retailing and Consumer Services 8 (2001) 147-156
    • (2001) Journal of Retailing and Consumer Services , vol.8 , pp. 147-156
    • Alon, I.1    Qi, M.2    Sadowski, R.J.3
  • 2
    • 0026383418 scopus 로고    scopus 로고
    • Bergerson, K., & Wunsch, D. C. (1991). A commodity trading model based on a neural network-expert system hybrid. In: Proceedings of the IEEE international conference on neural networks.
  • 7
    • 0000167087 scopus 로고
    • Rule-based forecasting: Development and validation of an expert systems approach to combining time series extrapolations
    • Collopy F., and Armstrong J.S. Rule-based forecasting: Development and validation of an expert systems approach to combining time series extrapolations. Management Science 38 (1992) 1394-1414
    • (1992) Management Science , vol.38 , pp. 1394-1414
    • Collopy, F.1    Armstrong, J.S.2
  • 8
    • 35348875471 scopus 로고
    • Prediction of monthly transition of the composition stock price index using recurrent backpropagation
    • Brighton, UK, 1992
    • Chong H.L., and Kyoung C.P. Prediction of monthly transition of the composition stock price index using recurrent backpropagation. ICANN'92 2 (1992) 1629-1632 Brighton, UK, 1992
    • (1992) ICANN'92 , vol.2 , pp. 1629-1632
    • Chong, H.L.1    Kyoung, C.P.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signal and Systems 2 (1989) 303-314
    • (1989) Mathematics of Control, Signal and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 35348910233 scopus 로고    scopus 로고
    • Deetae, N. (1991). A comparative study of forecasting techniques on rice, cassava, and mungbean. Farm Gate Prices, Master Thesis. Thailand: Kasetsart University.
  • 11
    • 33745952342 scopus 로고    scopus 로고
    • De Gooijer, Jan G., & Hyndman, R.J. (2006). 25 years of time series forecasting. International Journal of Forecasting, Elsevier, 22(3), 443-473.
  • 12
    • 35348909040 scopus 로고    scopus 로고
    • Dutta, S., & Shekhar, S. (1990). Bond rating: A non-conservative application of neural networks. IEEE International Conference on Neural Networks.
  • 13
    • 35348903263 scopus 로고    scopus 로고
    • Fansiri, J. (2004). Forecasting the rice-export price by ARIMA method. Technical report. Thailand: Chiang Mai University.
  • 14
    • 35348908394 scopus 로고    scopus 로고
    • Freisleben, B. (1992). Stock market prediction with backpropagation networks, industrial engineering applications of artificial intelligence and expert system. 5th International conference, June 1992, Paderborn, Germany, pp. 451-460.
  • 15
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 18
    • 35348872604 scopus 로고    scopus 로고
    • Gilbert, E. W., Krishnaswamy, C. R., & Pashley, M. M. (2000). Neural Network Applications in Finance: A Practical Introduction.
  • 19
    • 84978567506 scopus 로고
    • Forecasting S and P and gold futures prices: An application of neural networks
    • Grudnitski G., and Osburn L. Forecasting S and P and gold futures prices: An application of neural networks. The Journal of Futures Markets 13 6 (1993) 631-643
    • (1993) The Journal of Futures Markets , vol.13 , Issue.6 , pp. 631-643
    • Grudnitski, G.1    Osburn, L.2
  • 21
    • 0343337355 scopus 로고    scopus 로고
    • Much do about nothing? exchange rate forecasting: Neural networks vs. linear models using monthly and weekly data
    • Hann T.H., and Steurer E. Much do about nothing? exchange rate forecasting: Neural networks vs. linear models using monthly and weekly data. Neurocomputing 10 (1996) 323-339
    • (1996) Neurocomputing , vol.10 , pp. 323-339
    • Hann, T.H.1    Steurer, E.2
  • 22
    • 35348884912 scopus 로고    scopus 로고
    • Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted averages. O.N.R. Memorandum 52/1957, Carnegie Institute of Technology. Reprinted with discussion in 2004. International Journal of Forecasting, 20, 5-13.
  • 24
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer neural networks
    • Hornik K., Stinchcombe M., and White H. Universal approximation of an unknown mapping and its derivatives using multilayer neural networks. Neural Networks 3 (1990) 551-560
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 26
    • 35348893862 scopus 로고    scopus 로고
    • Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial, 29(3) (March 1996), Special issue: Neural computing: Companion issue to Spring 1996, IEEE Computational Science & Engineering, pp. 31-44, ISSN:0018-9162.
  • 27
    • 35348860231 scopus 로고    scopus 로고
    • Kerdsomboon, M. (1999). Forecasting of agricultural products and prices. Master Thesis. Thailand: Chulalongkorn University.
  • 29
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feed-forward and recurrent neural networks
    • Kuan C.-M., and Liu T. Forecasting exchange rates using feed-forward and recurrent neural networks. Journal of Applied Econometrics 10 (1995) 347-364
    • (1995) Journal of Applied Econometrics , vol.10 , pp. 347-364
    • Kuan, C.-M.1    Liu, T.2
  • 31
    • 35348833575 scopus 로고    scopus 로고
    • Lapedes, A., & Farber, R. (1987). Nonlinear Signal Processing Neural Information Processing System - Natural and Synthetic.
  • 32
    • 0028543030 scopus 로고
    • Artificial neural networks and their business applications
    • Li E.Y. Artificial neural networks and their business applications. Information and Management (1994) 1994
    • (1994) Information and Management , pp. 1994
    • Li, E.Y.1
  • 33
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • Ljung G.M., and Box G.E.P. On a measure of lack of fit in time series models. Biometrika 65 (1978) 297-303
    • (1978) Biometrika , vol.65 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 34
    • 35348917628 scopus 로고    scopus 로고
    • Maliwan, K. (2003). The analysis of price movement of jasmine rice in domestic market. Master Thesis. Thailand: Kasetsart University.
  • 35
    • 84984507932 scopus 로고
    • Accuracy in forecasting: A survey
    • Mahmoud E. Accuracy in forecasting: A survey. Journal of Forecasting 3 (1984) 139-159
    • (1984) Journal of Forecasting , vol.3 , pp. 139-159
    • Mahmoud, E.1
  • 36
    • 0030110886 scopus 로고    scopus 로고
    • Using neural networks to forecast the S&P 100 implied volatility
    • Malliaris M., and Salchenberger L. Using neural networks to forecast the S&P 100 implied volatility. Neurocomputing 10 2 (1996) 183-195
    • (1996) Neurocomputing , vol.10 , Issue.2 , pp. 183-195
    • Malliaris, M.1    Salchenberger, L.2
  • 40
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press/Bradford Books, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel Distributed Processing Foundations Vol. 1 (1986), MIT Press/Bradford Books, Cambridge, MA 318-362
    • (1986) Parallel Distributed Processing Foundations , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 42
    • 35348925439 scopus 로고    scopus 로고
    • Sangpattaranate P. (2005). Forecasting of rice prices in Thailand. Master Thesis. Thailand: Kasetsart University.
  • 43
    • 4243914758 scopus 로고
    • Stock price prediction using neural networks: A project report
    • Seattle, WA, pp. 1289-1293
    • Schoneburg E. Stock price prediction using neural networks: A project report. Neurocomputing 2 (1990) 17-27 Seattle, WA, pp. 1289-1293
    • (1990) Neurocomputing , vol.2 , pp. 17-27
    • Schoneburg, E.1
  • 44
    • 35348923582 scopus 로고    scopus 로고
    • Shachmurove, Y. (2002). Applying artificial neural networks to business, economics and finance, departments of economics. The City College of the City University of New York. Available online from http://www.econ.upenn.edu/Centers/CARESS/CARESSpdf/02-08.pdf.
  • 45
    • 0034123868 scopus 로고    scopus 로고
    • Smith, K. A. & Gupta, J. N. D. (2000). Neural networks in business: Techniques and applications for the operations researcher. Computers & Operations Research, 27(11-12), 1023-1044. Available from http://citeseer.ist.psu.edu/smith00neural.html.
  • 46
    • 0030167530 scopus 로고    scopus 로고
    • The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions
    • Tashman L., and Kruk J.M. The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions. International Journal of Forecasting 12 (1996) 235-253
    • (1996) International Journal of Forecasting , vol.12 , pp. 235-253
    • Tashman, L.1    Kruk, J.M.2
  • 48
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • 10.1016/S0895-4356(96)00002-9
    • Tu J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology 49 (1996) 1225-1231 10.1016/S0895-4356(96)00002-9
    • (1996) Journal of Clinical Epidemiology , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 49
    • 35348837863 scopus 로고    scopus 로고
    • Vanichanont, P. (2004). Thai rice: Sustainable life for rice growers. FAO rice conference, Rome, Italy, 12-13 February 2004. Available online from http://www.fao.org/rice2004/en/pdf/pramote.pdf.
  • 52
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • Winters P.R. Forecasting sales by exponentially weighted moving averages. Management Science 6 (1960) 324-342
    • (1960) Management Science , vol.6 , pp. 324-342
    • Winters, P.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.