메뉴 건너뛰기




Volumn 19, Issue 6-7, 2006, Pages 855-863

Fast algorithm and implementation of dissimilarity self-organizing maps

Author keywords

Clustering; Dissimilarity data; Fast implementation; Nonlinear projection; Pairwise Data; Proximity Data; Self organizing map; Unsupervised learning

Indexed keywords

ALGORITHMS; COSTS; DATA REDUCTION; DATABASE SYSTEMS; MATRIX ALGEBRA; NONLINEAR EQUATIONS; VECTORS;

EID: 33746893766     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.05.002     Document Type: Article
Times cited : (35)

References (24)
  • 1
    • 33746870622 scopus 로고    scopus 로고
    • Ambroise, C., & Govaert, G. (1996) Analyzing dissimilarity matrices via Kohonen maps. In Proceedings of 5th conference of the international federation of classification societies. Vol. 2 (pp. 96-99)
  • 3
    • 1342324582 scopus 로고    scopus 로고
    • The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping
    • Bahlmann C., and Burkhardt H. The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 3 (2004) 299-310
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.3 , pp. 299-310
    • Bahlmann, C.1    Burkhardt, H.2
  • 4
    • 33746880883 scopus 로고
    • A maximum entropy approach to pairwise data clustering
    • IEEE Computer Society Press, Hebrew University, Jerusalem, Israel
    • Buhmann J.M., and Hofmann T. A maximum entropy approach to pairwise data clustering. Proceedings of the international conference on pattern recognition Vol. II (1994), IEEE Computer Society Press, Hebrew University, Jerusalem, Israel 207-212
    • (1994) Proceedings of the international conference on pattern recognition , vol.II , pp. 207-212
    • Buhmann, J.M.1    Hofmann, T.2
  • 6
    • 33746866554 scopus 로고    scopus 로고
    • A self organizing map for dissimilarity data
    • Banks D., House L., McMorris F.R., Arabie P., and Gaul W. (Eds), IFCS, Springer, Chicago, Illinois, USA
    • El Golli A., Conan-Guez B., and Rossi F. A self organizing map for dissimilarity data. In: Banks D., House L., McMorris F.R., Arabie P., and Gaul W. (Eds). Classification, clustering, and data mining applications (Proceedings of IFCS 2004) (2004), IFCS, Springer, Chicago, Illinois, USA 61-68
    • (2004) Classification, clustering, and data mining applications (Proceedings of IFCS 2004) , pp. 61-68
    • El Golli, A.1    Conan-Guez, B.2    Rossi, F.3
  • 7
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • Graepel T., Burger M., and Obermayer K. Self-organizing maps: Generalizations and new optimization techniques. Neurocomputing 21 (1998) 173-190
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 8
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • Graepel T., and Obermayer K. A stochastic self-organizing map for proximity data. Neural Computation 11 1 (1999) 139-155
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 9
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • Hammer B., Micheli A., Strickert M., and Sperduti A. A general framework for unsupervised processing of structured data. Neurocomputing 57 (2004) 3-35
    • (2004) Neurocomputing , Issue.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Strickert, M.3    Sperduti, A.4
  • 10
    • 33746921835 scopus 로고    scopus 로고
    • Hammer, B., & Jain B. J. (2004). Neural methods for non-standard data. In Proceedings of ESANN 2004 (pp. 281-292)
  • 11
    • 84887005989 scopus 로고    scopus 로고
    • Hammer, B., & Villmann, T. (2005). Classification using non standard metrics. In Proceedings of ESANN 2005 (pp. 303-316)
  • 15
  • 17
    • 0344972931 scopus 로고    scopus 로고
    • Self-organizing maps of symbol strings
    • Kohonen T., and Somervuo P.J. Self-organizing maps of symbol strings. Neurocomputing 21 (1998) 19-30
    • (1998) Neurocomputing , vol.21 , pp. 19-30
    • Kohonen, T.1    Somervuo, P.J.2
  • 18
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen T., and Somervuo P.J. How to make large self-organizing maps for nonvectorial data. Neural Networks 15 8 (2002) 945-952
    • (2002) Neural Networks , vol.15 , Issue.8 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.J.2
  • 19
    • 0001116877 scopus 로고
    • Binary codes capable of correcting deletions, insertions and reversals
    • Levenshtein V.I. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklady 10 8 (1966) 707-710
    • (1966) Soviet Physics-Doklady , vol.10 , Issue.8 , pp. 707-710
    • Levenshtein, V.I.1
  • 20
  • 21
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter M.F. An algorithm for suffix stripping. Program 14 3 (1980) 130-137
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 22
    • 84886996569 scopus 로고    scopus 로고
    • Rossi, F., El Golli, A., & Lechevallier, Y. (2005) Usage guided clustering of web pages with the median self organizing map. In Proceedings of XIIIth European symposium on artificial neural networks (pp. 351-356)
  • 23
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • Seo S., and Obermayer K. Self-organizing maps and clustering methods for matrix data. Neural Networks 17 8-9 (2004) 1211-1229
    • (2004) Neural Networks , vol.17 , Issue.8-9 , pp. 1211-1229
    • Seo, S.1    Obermayer, K.2
  • 24
    • 0037401269 scopus 로고    scopus 로고
    • Empirical comparison of fast partitioning-based clustering algorithms for large data sets
    • Wei C.-P., Lee Y.-H., and Hsu C.-M. Empirical comparison of fast partitioning-based clustering algorithms for large data sets. Expert Systems with Application 24 4 (2003) 353-363
    • (2003) Expert Systems with Application , vol.24 , Issue.4 , pp. 353-363
    • Wei, C.-P.1    Lee, Y.-H.2    Hsu, C.-M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.