메뉴 건너뛰기




Volumn 74, Issue 18, 2011, Pages 3832-3842

Apply extended self-organizing map to cluster and classify mixed-type data

Author keywords

Classification; Clustering; Mixed type data; Self organizing maps; Visualization

Indexed keywords

CATEGORICAL DATA; CLUSTERING; HIDDEN PATTERNS; MIXED-TYPE DATA; REAL-WORLD DATASETS; SELF ORGANIZING;

EID: 80053307055     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.07.014     Document Type: Article
Times cited : (30)

References (48)
  • 1
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 1901, 6(2):559-572.
    • (1901) Philosophical Magazine Series , vol.6 , Issue.2 , pp. 559-572
    • Pearson, K.1
  • 2
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon J.W. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 1969, 100:401-409.
    • (1969) IEEE Transactions on Computers , vol.100 , pp. 401-409
    • Sammon, J.W.1
  • 4
    • 40649102222 scopus 로고    scopus 로고
    • GViSOM for multivariate mixed data projection and structure visualization
    • C.C. Hsu, K.M. Wang, S.H. Wang, GViSOM for multivariate mixed data projection and structure visualization, in: Proceedings of the IJCNN (2006), pp. 3300-3305.
    • (2006) Proceedings of the IJCNN. , pp. 3300-3305
    • Hsu, C.C.1    Wang, K.M.2    Wang, S.H.3
  • 5
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Proceedings of the IEEE 1990, 78:1464-1480.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 7
    • 9144249823 scopus 로고    scopus 로고
    • SOM-based algorithms for qualitative variables
    • Cottrell M., Ibbou S., Letremy P. SOM-based algorithms for qualitative variables. Neural Networks 2004, 17:1149-1167.
    • (2004) Neural Networks , vol.17 , pp. 1149-1167
    • Cottrell, M.1    Ibbou, S.2    Letremy, P.3
  • 16
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of Self-Organizing Maps
    • Tasdemir K., Merenyi E. Exploiting data topology in visualization and clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks 2009, 20:549-562.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , pp. 549-562
    • Tasdemir, K.1    Merenyi, E.2
  • 18
    • 0037707302 scopus 로고    scopus 로고
    • Adaptive double self-organizing maps for clustering gene expression profiles
    • Ressom H., Wang D., Natarajan P. Adaptive double self-organizing maps for clustering gene expression profiles. Neural Networks 2003, 16:633-640.
    • (2003) Neural Networks , vol.16 , pp. 633-640
    • Ressom, H.1    Wang, D.2    Natarajan, P.3
  • 20
    • 0242624714 scopus 로고    scopus 로고
    • Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density
    • Wu S., Chow T.W.S. Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition 2004, 37:175-188.
    • (2004) Pattern Recognition , vol.37 , pp. 175-188
    • Wu, S.1    Chow, T.W.S.2
  • 22
    • 0035966303 scopus 로고    scopus 로고
    • Extending the Kohonen self-organizing map networks for clustering analysis
    • Kiang M.Y. Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics and Data Analysis 2001, 38:161-180.
    • (2001) Computational Statistics and Data Analysis , vol.38 , pp. 161-180
    • Kiang, M.Y.1
  • 23
    • 0029288718 scopus 로고
    • Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering
    • Murtagh F. Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering. Pattern Recognition Letters 1995, 16:399-408.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 399-408
    • Murtagh, F.1
  • 24
    • 0036789789 scopus 로고    scopus 로고
    • Data visualisation and manifold mapping using the ViSOM
    • Yin H. Data visualisation and manifold mapping using the ViSOM. Neural Networks 2002, 15:1005-1016.
    • (2002) Neural Networks , vol.15 , pp. 1005-1016
    • Yin, H.1
  • 25
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity data sets
    • Hammer B., Hasenfuss A. Topographic mapping of large dissimilarity data sets. Neural Computation 2010, 22:2229-2284.
    • (2010) Neural Computation , vol.22 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 26
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel SOM and related Laplacian methods for social network analysis
    • Boulet R., Jouve B., Rossi F., Villa N. Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 2008, 71:1257-1273.
    • (2008) Neurocomputing , vol.71 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa, N.4
  • 27
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • Yin H. On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks 2006, 19:780-784.
    • (2006) Neural Networks , vol.19 , pp. 780-784
    • Yin, H.1
  • 28
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen T., Somervuo P. How to make large self-organizing maps for nonvectorial data. Neural Networks 2002, 15:945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 32
    • 0003033112 scopus 로고
    • Using information content to evaluate semantic similarity in a taxonomy
    • P. Resnik, Using information content to evaluate semantic similarity in a taxonomy, in: Proceedings of the IJCAI (1995).
    • (1995) Proceedings of the IJCAI.
    • Resnik, P.1
  • 36
    • 44949114202 scopus 로고    scopus 로고
    • Incremental clustering of mixed data based on distance hierarchy
    • Hsu C.C., Huang Y.P. Incremental clustering of mixed data based on distance hierarchy. Expert Systems with Applications 2008, 35:1177-1185.
    • (2008) Expert Systems with Applications , vol.35 , pp. 1177-1185
    • Hsu, C.C.1    Huang, Y.P.2
  • 37
    • 34447501949 scopus 로고    scopus 로고
    • Hierarchical clustering of mixed data based on distance hierarchy
    • Hsu C.C., Chen C.L., Su Y.W. Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences 2007, 177:4474-4492.
    • (2007) Information Sciences , vol.177 , pp. 4474-4492
    • Hsu, C.C.1    Chen, C.L.2    Su, Y.W.3
  • 38
    • 49449104635 scopus 로고    scopus 로고
    • On clustering tree structured data with categorical nature
    • Boutsinas B., Papastergiou T. On clustering tree structured data with categorical nature. Pattern Recognition 2008, 41:3613-3623.
    • (2008) Pattern Recognition , vol.41 , pp. 3613-3623
    • Boutsinas, B.1    Papastergiou, T.2
  • 41
    • 33644899363 scopus 로고    scopus 로고
    • Generalizing self-organizing map for categorical data
    • Hsu C.C. Generalizing self-organizing map for categorical data. IEEE transactions on Neural Networks 2006, 17:294-304.
    • (2006) IEEE transactions on Neural Networks , vol.17 , pp. 294-304
    • Hsu, C.C.1
  • 43
    • 50049112274 scopus 로고
    • SOM_PAK: The Self-Organizing Map Program Package, Ver 3.1, SOM programming team of Helsinki University of Technology
    • T. Kohonen, J. Kangas, J. Laaksonen, SOM_PAK: The Self-Organizing Map Program Package, Ver 3.1, SOM programming team of Helsinki University of Technology, 1995.
    • (1995)
    • Kohonen, T.1    Kangas, J.2    Laaksonen, J.3
  • 45
    • 14644388373 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases
    • Irvine, CA. [Online]. Available:
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, Univ. California, Dept, Inform. Comput. Sci., Irvine, CA, 1998. [Online]. Available: http://www.ics.uci.edu/~mlearn/ML-Repository.html.
    • (1998) Univ. California, Dept, Inform. Comput. Sci.
    • Blake, C.L.1    Merz, C.J.2
  • 48
    • 77957580800 scopus 로고    scopus 로고
    • Extending learning vector quantization for classifying data with categorical values, Agents and Artificial Intelligence
    • Chen N., Marques N.C. Extending learning vector quantization for classifying data with categorical values, Agents and Artificial Intelligence. Communications in Computer and Information Science 2010, 67(part 2):124-136.
    • (2010) Communications in Computer and Information Science , vol.67 , Issue.PART 2 , pp. 124-136
    • Chen, N.1    Marques, N.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.