메뉴 건너뛰기




Volumn 33, Issue 2, 2005, Pages 522-541

Asymptotic results with generalized estimating equations for longitudinal data

Author keywords

Asymptotic normality; Consistency; Generalized estimating equations; Generalized linear model

Indexed keywords


EID: 22944441282     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000001255     Document Type: Article
Times cited : (43)

References (15)
  • 1
    • 0033236905 scopus 로고    scopus 로고
    • Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs
    • CHEN, K., HU, I. and YING, Z. (1999). Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs. Ann. Statist. 27 1155-1163.
    • (1999) Ann. Statist. , vol.27 , pp. 1155-1163
    • Chen, K.1    Hu, I.2    Ying, Z.3
  • 2
    • 0001241028 scopus 로고
    • Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models
    • FAHRMEIR, L. and KAUFMANN, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 342-368.
    • (1985) Ann. Statist. , vol.13 , pp. 342-368
    • Fahrmeir, L.1    Kaufmann, H.2
  • 5
    • 38249038151 scopus 로고
    • On the strong law of large numbers for multivariate martingales
    • KAUFMANN, H. (1987). On the strong law of large numbers for multivariate martingales. Stochastic Process. Appl. 26 73-85.
    • (1987) Stochastic Process. Appl. , vol.26 , pp. 73-85
    • Kaufmann, H.1
  • 6
    • 49249142146 scopus 로고
    • Strong consistency of least squares estimates in multiple regression. II
    • LAI, T. L., ROBBINS, H. and WEI, C. Z. (1979). Strong consistency of least squares estimates in multiple regression. II. J. Multivariate Anal. 9 343-361.
    • (1979) J. Multivariate Anal. , vol.9 , pp. 343-361
    • Lai, T.L.1    Robbins, H.2    Wei, C.Z.3
  • 7
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • LIANG, K.-Y. and ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 9
    • 22944457245 scopus 로고    scopus 로고
    • Marginal models for repeated observations: Inference with survey data
    • Amer. Statist. Assoc., Alexandria, VA
    • RAO, J. N. K. (1998). Marginal models for repeated observations: Inference with survey data. In Proc. Section on Survey Research Methods 76-82. Amer. Statist. Assoc., Alexandria, VA.
    • (1998) Proc. Section on Survey Research Methods , pp. 76-82
    • Rao, J.N.K.1
  • 10
    • 22944454604 scopus 로고    scopus 로고
    • Asymptotic results for generalized estimating equations with data from complex surveys
    • SCHIOPU-KRATINA, I. (2003). Asymptotic results for generalized estimating equations with data from complex surveys. Rev. Roumaine Math. Pures Appl. 48 327-342.
    • (2003) Rev. Roumaine Math. Pures Appl. , vol.48 , pp. 327-342
    • Schiopu-Kratina, I.1
  • 12
    • 0345402895 scopus 로고
    • Asymptotic theory in generalized linear models with nuisance scale parameters
    • SHAO, J. (1992). Asymptotic theory in generalized linear models with nuisance scale parameters. Probab. Theory Related Fields 91 25-41.
    • (1992) Probab. Theory Related Fields , vol.91 , pp. 25-41
    • Shao, J.1
  • 14
    • 22944450368 scopus 로고    scopus 로고
    • Asymptotics for generalized estimating equations with large cluster sizes
    • XIE, M. and YANG, Y. (2003). Asymptotics for generalized estimating equations with large cluster sizes. Ann. Statist. 31 310-347.
    • (2003) Ann. Statist. , vol.31 , pp. 310-347
    • Xie, M.1    Yang, Y.2
  • 15
    • 0001040805 scopus 로고    scopus 로고
    • Asymptotics of estimating equations under natural conditions
    • YUAN, K.-H. and JENNRICH, R. I. (1998). Asymptotics of estimating equations under natural conditions. J. Multivariate Anal. 65 245-260.
    • (1998) J. Multivariate Anal. , vol.65 , pp. 245-260
    • Yuan, K.-H.1    Jennrich, R.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.