메뉴 건너뛰기




Volumn 17, Issue 10, 2012, Pages 3934-3946

Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method

Author keywords

Caputo derivative; Cubic B spline function; Interpolating condition; Wavelet collocation method

Indexed keywords

DIFFERENTIAL EQUATIONS; INTERPOLATION; NUMERICAL METHODS;

EID: 84862819055     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2012.02.009     Document Type: Article
Times cited : (102)

References (44)
  • 1
    • 80051547022 scopus 로고    scopus 로고
    • Spline collocation methods for linear multi-term fractional differential equations
    • Pedas Arvet, Tamme Enn Spline collocation methods for linear multi-term fractional differential equations. J Comput Appl Math 2011, 236:167-176.
    • (2011) J Comput Appl Math , vol.236 , pp. 167-176
    • Pedas, A.1    Tamme, E.2
  • 2
    • 79953828683 scopus 로고    scopus 로고
    • On the convergence of spline collocation methods for solving fractional differential equations
    • Pedas Arvet, Tamme Enn On the convergence of spline collocation methods for solving fractional differential equations. J Comput Appl Math 2011, 235:3502-3514.
    • (2011) J Comput Appl Math , vol.235 , pp. 3502-3514
    • Pedas, A.1    Tamme, E.2
  • 3
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput Math Appl 2010, 59:1326-1336.
    • (2010) Comput Math Appl , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 4
    • 0011570697 scopus 로고
    • Optimal error bounds for cubic spline interpolation
    • Hall C.A., Meryer W.W. Optimal error bounds for cubic spline interpolation. J Approx Theory 1976, 16:105-122.
    • (1976) J Approx Theory , vol.16 , pp. 105-122
    • Hall, C.A.1    Meryer, W.W.2
  • 5
    • 0019613040 scopus 로고
    • Laguerre operational matrices for fractional calculus and applications
    • Hwang C., Shih Y.P. Laguerre operational matrices for fractional calculus and applications. Int J Control 1981, 34(3):577-584.
    • (1981) Int J Control , vol.34 , Issue.3 , pp. 577-584
    • Hwang, C.1    Shih, Y.P.2
  • 6
    • 0042034974 scopus 로고
    • On the generalization of block-pulse operational matrices for fractional and operational calculus
    • Wang C.H. On the generalization of block-pulse operational matrices for fractional and operational calculus. J Franklin Inst 1983, 315(2):91-102.
    • (1983) J Franklin Inst , vol.315 , Issue.2 , pp. 91-102
    • Wang, C.H.1
  • 8
    • 33646161468 scopus 로고    scopus 로고
    • Numerical solution of fractional integro-differential equations by collocation method
    • Rawashdeh E.A. Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 2006, 176:1-6.
    • (2006) Appl Math Comput , vol.176 , pp. 1-6
    • Rawashdeh, E.A.1
  • 9
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • Wu G., Lee E.W.M. Fractional variational iteration method and its application. Phys Lett A 2010, 374:2506-2509.
    • (2010) Phys Lett A , vol.374 , pp. 2506-2509
    • Wu, G.1    Lee, E.W.M.2
  • 12
    • 67349274987 scopus 로고    scopus 로고
    • A wavelet operational method for solving fractional partial differential equations numerically
    • Wu J.L. A wavelet operational method for solving fractional partial differential equations numerically. Appl Math Comput 2009, 214:31-40.
    • (2009) Appl Math Comput , vol.214 , pp. 31-40
    • Wu, J.L.1
  • 13
    • 1542677294 scopus 로고    scopus 로고
    • Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation
    • Wang J.Z. Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation. Appl Comput Harmonic Anal 1996, 3:154-163.
    • (1996) Appl Comput Harmonic Anal , vol.3 , pp. 154-163
    • Wang, J.Z.1
  • 14
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 1997, 5:1-6.
    • (1997) Electron Trans Numer Anal , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 15
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • Diethelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional Adams method. Numer Alg 2004, 36:31-52.
    • (2004) Numer Alg , vol.36 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 16
    • 80053385266 scopus 로고    scopus 로고
    • The construction of operational matrix of fractional derivatives using B-spline functions
    • Lakestani M., Dehghan M., Irandoust-pakchin S. The construction of operational matrix of fractional derivatives using B-spline functions. Commun Nonlinear Sci Numer Simul 2011, 10.1016/j.cnsns.2011.07.018.
    • (2011) Commun Nonlinear Sci Numer Simul
    • Lakestani, M.1    Dehghan, M.2    Irandoust-pakchin, S.3
  • 17
    • 0004171153 scopus 로고    scopus 로고
    • Numerical treatment of differential equations of fractional order
    • Blank L. Numerical treatment of differential equations of fractional order. Manchester Centre Comput Math Numer Anal Rep 1996, 287.
    • (1996) Manchester Centre Comput Math Numer Anal Rep , vol.287
    • Blank, L.1
  • 18
    • 0036554885 scopus 로고    scopus 로고
    • A numerical scheme for dynamic systems containing fractional derivatives
    • Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. Vibr Acoust 2002, 124:321-324.
    • (2002) Vibr Acoust , vol.124 , pp. 321-324
    • Yuan, L.1    Agrawal, O.P.2
  • 19
    • 85196185887 scopus 로고    scopus 로고
    • Numerical simulations of anomalous diffusion. In: Computer Methods Mech, Conference Gliwice Wisla Poland, 2003.
    • Ciesielski M, Leszczynski Jacek. Numerical simulations of anomalous diffusion. In: Computer Methods Mech, Conference Gliwice Wisla Poland, 2003.
    • Ciesielski, M.1    Leszczynski, J.2
  • 20
    • 0023346379 scopus 로고
    • Generalization of generalized orthogonal polynomial operational matrices for fractional and operational calculus
    • Wang M.L., Chang R.Y., Yang S.Y. Generalization of generalized orthogonal polynomial operational matrices for fractional and operational calculus. Int J Syst Sci 1987, 18(5):931-943.
    • (1987) Int J Syst Sci , vol.18 , Issue.5 , pp. 931-943
    • Wang, M.L.1    Chang, R.Y.2    Yang, S.Y.3
  • 21
    • 84862785348 scopus 로고    scopus 로고
    • Numerical solution of nonlinear multi-order fractioanl defferential equations by implementation of the operatioanl matrix of fractional derivative
    • Khader M.M. Numerical solution of nonlinear multi-order fractioanl defferential equations by implementation of the operatioanl matrix of fractional derivative. Stud Nonlinear Sci 2011, 2(1):5-12.
    • (2011) Stud Nonlinear Sci , vol.2 , Issue.1 , pp. 5-12
    • Khader, M.M.1
  • 22
    • 83655192025 scopus 로고    scopus 로고
    • A numerical method for solving boundary value problems for fractional differential equations
    • ur Rehman, Khan Rahmat Ali A numerical method for solving boundary value problems for fractional differential equations. Appl Math Model 2011, 10.1016/j.apm.2011.07.045.
    • (2011) Appl Math Model
    • ur Rehman1    Khan, R.A.2
  • 23
    • 84978969851 scopus 로고    scopus 로고
    • Optimal error bounds for the cubic spline interpolation of lower smooth function (II)
    • Ye M. Optimal error bounds for the cubic spline interpolation of lower smooth function (II). Appl Math JCU 1998, 13:223-230.
    • (1998) Appl Math JCU , vol.13 , pp. 223-230
    • Ye, M.1
  • 24
    • 67349259080 scopus 로고    scopus 로고
    • Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations
    • Ford N.J., Joseph Connolly A. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J Comput Appl Math 2009, 229:382-391.
    • (2009) J Comput Appl Math , vol.229 , pp. 382-391
    • Ford, N.J.1    Joseph Connolly, A.2
  • 25
    • 0035625795 scopus 로고    scopus 로고
    • The numerical solution of fractional differential equations: speed versus accuracy
    • Ford N.J., Charles Simpson A. The numerical solution of fractional differential equations: speed versus accuracy. Numer Alg 2001, 26:333-346.
    • (2001) Numer Alg , vol.26 , pp. 333-346
    • Ford, N.J.1    Charles Simpson, A.2
  • 26
    • 35349007940 scopus 로고    scopus 로고
    • Numerical studies for a multi-order fractional differential equation
    • Sweilam N.H., Khader M.M., Al-Bar R.F. Numerical studies for a multi-order fractional differential equation. Phys Lett A 2007, 371:26-33.
    • (2007) Phys Lett A , vol.371 , pp. 26-33
    • Sweilam, N.H.1    Khader, M.M.2    Al-Bar, R.F.3
  • 27
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • Kumar P., Agrawal O.P. An approximate method for numerical solution of fractional differential equations. Signal Process 2006, 86:2602-2610.
    • (2006) Signal Process , vol.86 , pp. 2602-2610
    • Kumar, P.1    Agrawal, O.P.2
  • 28
    • 85196179306 scopus 로고    scopus 로고
    • New numerical schemes for the solution of fractional differential equations. Southern Illinois University at Carbondale.
    • Kumar P. New numerical schemes for the solution of fractional differential equations. Southern Illinois University at Carbondale, vol. 134, 2006.
    • , vol.134 , pp. 2006
    • Kumar, P.1
  • 29
    • 44149109234 scopus 로고    scopus 로고
    • Numerical scheme for the solution of fractional differential equations of order greater than one
    • Kumar P., Agrawal O.P. Numerical scheme for the solution of fractional differential equations of order greater than one. J Comput Nonlinear Dyn. 2006, 1:178-185.
    • (2006) J Comput Nonlinear Dyn. , vol.1 , pp. 178-185
    • Kumar, P.1    Agrawal, O.P.2
  • 30
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics aproach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics aproach. Phys Rep 2000, 339:1-77.
    • (2000) Phys Rep , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 31
    • 0022131218 scopus 로고
    • Modified Laguerre operational matrices for fractional calculus and applications
    • Chang R.Y., Chen K.C., Wang M.L. Modified Laguerre operational matrices for fractional calculus and applications. Int J Syst Sci 1985, 16(9):1163-1172.
    • (1985) Int J Syst Sci , vol.16 , Issue.9 , pp. 1163-1172
    • Chang, R.Y.1    Chen, K.C.2    Wang, M.L.3
  • 32
    • 80155171902 scopus 로고    scopus 로고
    • The use of Legendre multiwavelet collocation method for solving the faractional optimal control problems
    • [in press]. doi:10.1177/1077546311399950.
    • Yousefi SA, Lotfi A, Dehghan M. The use of Legendre multiwavelet collocation method for solving the faractional optimal control problems. J Vibr Control [in press]. doi:10.1177/1077546311399950. doi:10.1177/1077546311399950.
    • J Vibr Control
    • Yousefi, S.A.1    Lotfi, A.2    Dehghan, M.3
  • 33
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J Comput Phys 2006, 216:264-274.
    • (2006) J Comput Phys , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 34
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time-fractional Navier-Stokes equation by adomian decomposition method
    • Momani S., Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by adomian decomposition method. Appl Math Comput 2006, 177:488-494.
    • (2006) Appl Math Comput , vol.177 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 35
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • Momani S., Odibat Z. Numerical approach to differential equations of fractional order. J Comput Appl Math 2007, 96-110.
    • (2007) J Comput Appl Math , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 36
    • 50949125208 scopus 로고    scopus 로고
    • On a numerical scheme for solving differential equations of fractional order
    • Atanackovic T.M., Stankovic B. On a numerical scheme for solving differential equations of fractional order. Mech Res Commun 2008, 429-438.
    • (2008) Mech Res Commun , pp. 429-438
    • Atanackovic, T.M.1    Stankovic, B.2
  • 37
    • 0016072879 scopus 로고
    • Error bounds for interpolationg cubic splines under various end conditions
    • Lucas T.R. Error bounds for interpolationg cubic splines under various end conditions. SIAM J Numer Anal 1974, 569-584.
    • (1974) SIAM J Numer Anal , pp. 569-584
    • Lucas, T.R.1
  • 38
    • 0000995271 scopus 로고    scopus 로고
    • Adaptive multi-resolution collocation methods for Initial boundary value problems of nonlinear PDEs
    • Cai W., Wang J. Adaptive multi-resolution collocation methods for Initial boundary value problems of nonlinear PDEs. SIAM J Numer Anal 1996, 937-970.
    • (1996) SIAM J Numer Anal , pp. 937-970
    • Cai, W.1    Wang, J.2
  • 39
    • 79961013964 scopus 로고    scopus 로고
    • Numerical solution of fractional differential equations using the generalized block pulse operational matrix
    • Li Yuanlu, Sun Ning Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Comput Math Appl 2010, 216:1046-1054.
    • (2010) Comput Math Appl , vol.216 , pp. 1046-1054
    • Li, Y.1    Sun, N.2
  • 40
    • 77953135236 scopus 로고    scopus 로고
    • Haar wavelet operational matrix of fractional order integration and its applications in solving the fractioanl order differntial equations
    • Li Yuanlu, Zhao Weiwei Haar wavelet operational matrix of fractional order integration and its applications in solving the fractioanl order differntial equations. Appl Math Comput 2010, 216:2276-2285.
    • (2010) Appl Math Comput , vol.216 , pp. 2276-2285
    • Li, Y.1    Zhao, W.2
  • 41
    • 84862784815 scopus 로고    scopus 로고
    • Application of variational iteration method to equations of fractional order
    • Odibat Z., Momani S. Application of variational iteration method to equations of fractional order. Int J Nonlinear Sci Numer Simul 2006, 7:271-279.
    • (2006) Int J Nonlinear Sci Numer Simul , vol.7 , pp. 271-279
    • Odibat, Z.1    Momani, S.2
  • 42
    • 33746208811 scopus 로고    scopus 로고
    • Approximations of fractional integrals and Caputo fractional derivatives
    • Odibat Z. Approximations of fractional integrals and Caputo fractional derivatives. Appl Math Comput 2006, 527-533.
    • (2006) Appl Math Comput , pp. 527-533
    • Odibat, Z.1
  • 43
    • 34548384362 scopus 로고    scopus 로고
    • Numerical methods for nonlinear partial differential equations of fractional order
    • Odibat Z., Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl Math Model 2008, 32:28-39.
    • (2008) Appl Math Model , vol.32 , pp. 28-39
    • Odibat, Z.1    Momani, S.2
  • 44
    • 61449085393 scopus 로고    scopus 로고
    • Computational algorithms for computing the fractional derivatives of functions
    • Odibat Z.M. Computational algorithms for computing the fractional derivatives of functions. Math Comput Simul 2009, 79.
    • (2009) Math Comput Simul , pp. 79
    • Odibat, Z.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.