메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 459-469

Genetic Engineering of Inhibitor-Tolerant Saccharomyces cerevisiae for Improved Xylose Utilization in Ethanol Production

Author keywords

Cellulosic ethanol; Glucose xylose co fermentation; Metabolic engineering; Xylose utilization

Indexed keywords

2-FURALDEHYDE; ANAEROBIC FERMENTATION; BIOMASS SUGARS; COFERMENTATION; ETHANOL PRODUCTION; FURALDEHYDE; IN-SITU; SACCHAROMYCES CEREVISIAE STRAINS; SOLE CARBON SOURCE; XYLOSE ISOMERASE; XYLOSE TRANSPORT; XYLULOKINASE;

EID: 84862803074     PISSN: 19391234     EISSN: 19391242     Source Type: Journal    
DOI: 10.1007/s12155-011-9176-9     Document Type: Article
Times cited : (28)

References (34)
  • 1
    • 77955583668 scopus 로고    scopus 로고
    • Biomass conversion inhibitors and in situ detoxification
    • A. A. Vertès, N. Qureshi, H. P. Blaschek, and H. Yukawa (Eds.), West Sussex: Wiley
    • Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, West Sussex, pp 233-259.
    • (2010) Biomass to Biofuels: Strategies for Global Industries , pp. 233-259
    • Liu, Z.L.1    Blaschek, H.P.2
  • 2
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74: 25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 3
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 4
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64: 1852-1859.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 5
    • 0038748280 scopus 로고    scopus 로고
    • Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105(108): 277-286.
    • (2003) Appl Biochem Biotechnol , vol.105 , Issue.108 , pp. 277-286
    • Jin, Y.S.1    Jeffries, T.W.2
  • 6
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6: 5.
    • (2007) Microb Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 7
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika A, Sawayama S (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106: 306-309.
    • (2008) J Biosci Bioeng , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 9
    • 0030772483 scopus 로고    scopus 로고
    • Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
    • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48: 218-224.
    • (1997) Appl Microbiol Biotechnol , vol.48 , pp. 218-224
    • Walfridsson, M.1    Anderlund, M.2    Bao, X.3    Hahn-Hägerdal, B.4
  • 10
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63: 495-509.
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 11
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75: 2304-2311.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 13
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4: 69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.5    de Laat, W.T.6
  • 14
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A et al (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82: 1067-1078.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6
  • 15
    • 78149412303 scopus 로고    scopus 로고
    • Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation
    • Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T et al (2010) Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 88: 1215-1221.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 1215-1221
    • Tanino, T.1    Hotta, A.2    Ito, T.3    Ishii, J.4    Yamada, R.5    Hasunuma, T.6
  • 16
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus XylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus XylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648-4651.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 17
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP et al (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399-409.
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    van Dijken, J.P.6
  • 18
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
    • Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21: 671-684.
    • (2004) Yeast , vol.21 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.2
  • 19
    • 44449171842 scopus 로고    scopus 로고
    • Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose assimilating S. cerevisiae via expression of glucose transporter Sut1
    • Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T et al (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43: 115-119.
    • (2008) Enzyme Microb Technol , vol.43 , pp. 115-119
    • Katahira, S.1    Ito, M.2    Takema, H.3    Fujita, Y.4    Tanino, T.5    Tanaka, T.6
  • 20
    • 79958211835 scopus 로고    scopus 로고
    • Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
    • Young E, Poucher A, Comer A, Bailey A, Alper H (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol 77: 3311-3319.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 3311-3319
    • Young, E.1    Poucher, A.2    Comer, A.3    Bailey, A.4    Alper, H.5
  • 21
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80: 675-684.
    • (2008) Appl Microbiol Biotechnol , vol.80 , pp. 675-684
    • Hector, R.E.1    Qureshi, N.2    Hughes, S.R.3    Cotta, M.A.4
  • 22
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • Du J, Li S, Zhao H (2010) Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6: 2150-2156.
    • (2010) Mol Biosyst , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 23
    • 48449092222 scopus 로고    scopus 로고
    • The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator
    • Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154: 1646-1655.
    • (2008) Microbiology , vol.154 , pp. 1646-1655
    • Leandro, M.J.1    Spencer-Martins, I.2    Gonçalves, P.3
  • 24
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae
    • Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81: 743-753.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, A.J.3    Slininger, P.J.4    Weber, S.5
  • 25
    • 69249214122 scopus 로고    scopus 로고
    • Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
    • Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282: 233-244.
    • (2009) Mol Genet Genomics , vol.282 , pp. 233-244
    • Liu, Z.L.1    Ma, M.2    Song, M.3
  • 26
    • 33644941225 scopus 로고    scopus 로고
    • System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
    • Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40: 73-78.
    • (2006) Biotechniques , vol.40 , pp. 73-78
    • Taxis, C.1    Knop, M.2
  • 28
    • 4043074964 scopus 로고    scopus 로고
    • Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe
    • Fuglsang A (2004) Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Antonie van Leeuwenhoek 86: 135-147.
    • (2004) Antonie Van Leeuwenhoek , vol.86 , pp. 135-147
    • Fuglsang, A.1
  • 29
    • 77953254169 scopus 로고    scopus 로고
    • Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae
    • Ma M, Liu ZL (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10: 169.
    • (2010) BMC Microbiol , vol.10 , pp. 169
    • Ma, M.1    Liu, Z.L.2
  • 30
    • 78549260740 scopus 로고    scopus 로고
    • Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RNP4, and HSF1 as key regulatory genes in genomic adaptation to lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae
    • Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RNP4, and HSF1 as key regulatory genes in genomic adaptation to lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 11: 660.
    • (2010) BMC Genomics , vol.11 , pp. 660
    • Ma, M.1    Liu, Z.L.2
  • 32
    • 33847335427 scopus 로고    scopus 로고
    • Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR
    • Liu ZL, Slininger PJ (2007) Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR. J Microbiol Methods 68: 486-496.
    • (2007) J Microbiol Methods , vol.68 , pp. 486-496
    • Liu, Z.L.1    Slininger, P.J.2
  • 33
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • Partow S, Siewers V, Bjørn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27: 955-964.
    • (2010) Yeast , vol.27 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjørn, S.3    Nielsen, J.4    Maury, J.5
  • 34
    • 0035650510 scopus 로고    scopus 로고
    • Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
    • Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67: 5668-5674.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 5668-5674
    • Träff, K.L.1    Otero Cordero, R.R.2    van Zyl, W.H.3    Hahn-Hägerdal, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.