-
2
-
-
0000065017
-
Ensemble learning in Bayesian neural networks
-
Springer
-
D. Barber and C. Bishop. Ensemble Learning in Bayesian Neural Networks. In Neural Networks and Machine Learning, pages 215-237. Springer, 1998.
-
(1998)
Neural Networks and Machine Learning
, pp. 215-237
-
-
Barber, D.1
Bishop, C.2
-
5
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami. A Variational Method for Learning Sparse and Overcomplete Representations. Neural Computation, 13(11):2517-2532, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.11
, pp. 2517-2532
-
-
Girolami, M.1
-
7
-
-
33749044832
-
A variational approach to Bayesian logistic regression problems and their extensions
-
T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In Artificial Intelligence and Statistics, 1996.
-
(1996)
Artificial Intelligence and Statistics
-
-
Jaakkola, T.1
Jordan, M.2
-
8
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25-37, 2000.
-
(2000)
Statistics and Computing
, vol.10
, Issue.1
, pp. 25-37
-
-
Jaakkola, T.1
Jordan, M.2
-
9
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
M. Kuss and C. Rasmussen. Assessing Approximate Inference for Binary Gaussian Process Classification. Journal of Machine Learning Research, 6: 1679-1704, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.2
-
10
-
-
56349122110
-
Approximations for binary Gaussian process classification
-
10
-
H. Nickisch and C. Rasmussen. Approximations for Binary Gaussian Process Classification. Journal of Machine Learning Research, 9:2035-2078, 10 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2035-2078
-
-
Nickisch, H.1
Rasmussen, C.2
-
11
-
-
71149097861
-
Convex variational Bayesian inference for large scale generalized linear models
-
H. Nickisch and M. Seeger. Convex Variational Bayesian Inference for Large Scale Generalized Linear Models. International Conference on Machine Learning, 26:761-768, 2009.
-
(2009)
International Conference on Machine Learning
, vol.26
, pp. 761-768
-
-
Nickisch, H.1
Seeger, M.2
-
12
-
-
63249135864
-
The variational Gaussian approximation revisited
-
M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited. Neural Computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
13
-
-
84864068448
-
Variational em algorithms for non-Gaussian latent variable models
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
-
A. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-Gaussian latent variable models. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-tion Processing Systems (NIPS), number 19, pages 1059-1066, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neural Informa-tion Processing Systems (NIPS)
, Issue.19
, pp. 1059-1066
-
-
Palmer, A.1
Wipf, D.2
Kreutz-Delgado, K.3
Rao, B.4
-
14
-
-
84898947199
-
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
-
S. Solla, T. Leen, and Müller, editors, Cambridge, MA, MIT Press
-
M. Seeger. Bayesian Model Selection for Support Vector Machines, Gaussian Processes and other Kernel Classifiers. In S. Solla, T. Leen, and Müller, editors, Advances in Neural Information Processing Systems (NIPS), number 12, pages 603-609, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Neural Information Processing Systems (NIPS)
, Issue.12
, pp. 603-609
-
-
Seeger, M.1
-
15
-
-
74349098311
-
Sparse linear models: Variational approximate inference and Bayesian experimental design
-
M. Seeger. Sparse linear models: Variational approximate inference and Bayesian experimental design. Journal of Physics: Conference Series, 197(1), 2009.
-
(2009)
Journal of Physics: Conference Series
, vol.197
, Issue.1
-
-
Seeger, M.1
-
17
-
-
57649220812
-
A unified Bayesian framework for MEG/EEG source imaging
-
D. Wipf and S. Nagarajan. A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3):947-966, 2009.
-
(2009)
NeuroImage
, vol.44
, Issue.3
, pp. 947-966
-
-
Wipf, D.1
Nagarajan, S.2
|