메뉴 건너뛰기




Volumn 15, Issue , 2011, Pages 199-207

Concave Gaussian variational approximations for inference in large-scale Bayesian linear models

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE BAYESIAN INFERENCE; CONCAVE FUNCTION; GAUSSIAN APPROXIMATIONS; GAUSSIANS; KULLBACK LEIBLER DIVERGENCE; KULLBACK-LEIBLER; LOWER BOUNDS; MARGINAL LIKELIHOOD; OPTIMISATIONS; VARIATIONAL APPROXIMATION; VARIATIONAL METHODS;

EID: 84862280449     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (17)
  • 2
    • 0000065017 scopus 로고    scopus 로고
    • Ensemble learning in Bayesian neural networks
    • Springer
    • D. Barber and C. Bishop. Ensemble Learning in Bayesian Neural Networks. In Neural Networks and Machine Learning, pages 215-237. Springer, 1998.
    • (1998) Neural Networks and Machine Learning , pp. 215-237
    • Barber, D.1    Bishop, C.2
  • 4
  • 5
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • M. Girolami. A Variational Method for Learning Sparse and Overcomplete Representations. Neural Computation, 13(11):2517-2532, 2001.
    • (2001) Neural Computation , vol.13 , Issue.11 , pp. 2517-2532
    • Girolami, M.1
  • 7
    • 33749044832 scopus 로고    scopus 로고
    • A variational approach to Bayesian logistic regression problems and their extensions
    • T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In Artificial Intelligence and Statistics, 1996.
    • (1996) Artificial Intelligence and Statistics
    • Jaakkola, T.1    Jordan, M.2
  • 8
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.2
  • 9
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • M. Kuss and C. Rasmussen. Assessing Approximate Inference for Binary Gaussian Process Classification. Journal of Machine Learning Research, 6: 1679-1704, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.2
  • 10
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • 10
    • H. Nickisch and C. Rasmussen. Approximations for Binary Gaussian Process Classification. Journal of Machine Learning Research, 9:2035-2078, 10 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.2
  • 11
    • 71149097861 scopus 로고    scopus 로고
    • Convex variational Bayesian inference for large scale generalized linear models
    • H. Nickisch and M. Seeger. Convex Variational Bayesian Inference for Large Scale Generalized Linear Models. International Conference on Machine Learning, 26:761-768, 2009.
    • (2009) International Conference on Machine Learning , vol.26 , pp. 761-768
    • Nickisch, H.1    Seeger, M.2
  • 12
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 13
    • 84864068448 scopus 로고    scopus 로고
    • Variational em algorithms for non-Gaussian latent variable models
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
    • A. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-Gaussian latent variable models. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-tion Processing Systems (NIPS), number 19, pages 1059-1066, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Informa-tion Processing Systems (NIPS) , Issue.19 , pp. 1059-1066
    • Palmer, A.1    Wipf, D.2    Kreutz-Delgado, K.3    Rao, B.4
  • 14
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
    • S. Solla, T. Leen, and Müller, editors, Cambridge, MA, MIT Press
    • M. Seeger. Bayesian Model Selection for Support Vector Machines, Gaussian Processes and other Kernel Classifiers. In S. Solla, T. Leen, and Müller, editors, Advances in Neural Information Processing Systems (NIPS), number 12, pages 603-609, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems (NIPS) , Issue.12 , pp. 603-609
    • Seeger, M.1
  • 15
    • 74349098311 scopus 로고    scopus 로고
    • Sparse linear models: Variational approximate inference and Bayesian experimental design
    • M. Seeger. Sparse linear models: Variational approximate inference and Bayesian experimental design. Journal of Physics: Conference Series, 197(1), 2009.
    • (2009) Journal of Physics: Conference Series , vol.197 , Issue.1
    • Seeger, M.1
  • 17
    • 57649220812 scopus 로고    scopus 로고
    • A unified Bayesian framework for MEG/EEG source imaging
    • D. Wipf and S. Nagarajan. A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3):947-966, 2009.
    • (2009) NeuroImage , vol.44 , Issue.3 , pp. 947-966
    • Wipf, D.1    Nagarajan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.