메뉴 건너뛰기




Volumn 15, Issue , 2011, Pages 452-460

Group Orthogonal Matching Pursuit for logistic regression

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC LIMITS; CONSISTENCY RESULT; EMPIRICAL EVALUATIONS; EXPLANATORY VARIABLES; GENERALIZED LINEAR MODEL; LINEAR REGRESSION MODELS; LOGISTIC REGRESSION MODELS; LOGISTIC REGRESSIONS; MATCHING PURSUIT; NON-ASYMPTOTIC; ORTHOGONAL MATCHING PURSUIT; PREDICTION ACCURACY; PREDICTIVE ACCURACY; REAL-WORLD PROBLEM; SAMPLE SIZES; SIMULATED DATASETS; SPLICE SITE; VARIABLE SELECTION;

EID: 84862271984     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (52)

References (28)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • BACH, F.R., Consistency of the Group Lasso and Multiple Kernel Learning, J. Mach. Learn. Res., 9, 1179-1225, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 2
    • 0031586003 scopus 로고    scopus 로고
    • Prediction of complete gene structures in human genomic DNA
    • BURGE, C. AND KARLIN, S., Prediction of complete gene structures in human genomic DNA., J. Molec. Biol., 268, 7894, 1997.
    • (1997) J. Molec. Biol. , vol.268 , pp. 7894
    • Burge, C.1    Karlin, S.2
  • 3
    • 0000093674 scopus 로고    scopus 로고
    • Modeling dependencies in pre-mrna splicing signals
    • (eds S. Salzberg, D. Searls and S. Kasif), ch. 8. New York: Elsevier Science
    • BURGE, C., Modeling dependencies in pre-mrna splicing signals. In Computational Methods in Molecular Biology (eds S. Salzberg, D. Searls and S. Kasif), ch. 8, pp. 129164. New York: Elsevier Science. 1998.
    • (1998) Computational Methods in Molecular Biology , pp. 129164
    • Burge, C.1
  • 4
    • 84856683945 scopus 로고    scopus 로고
    • Orthogonal matching pursuit from noisy random measurements: A new analysis
    • FLETCHER A., RANGAN S., Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis, in proc. NIPS'09, 2009.
    • (2009) Proc. NIPS'09
    • Fletcher, A.1    Rangan, S.2
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • FREUND. Y., SCHAPIRE, R. E., A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and system Sciences, Vol. 55(1), 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 84898981137 scopus 로고    scopus 로고
    • Learning exponential families in high dimensions: Strong convexity and sparsity
    • KAKADE S., SHAMIR O., SRIDHARAN K., TEWARI S., Learning Exponential Families in High Dimensions: Strong Convexity and Sparsity, AISTATS 2010.
    • (2010) AISTATS
    • Kakade, S.1    Shamir, O.2    Sridharan, K.3    Tewari, S.4
  • 10
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • KIM Y., KIM J., KIM Y., Blockwise sparse regression, Statistica Sinica, 16, 375-390, 2006.
    • (2006) Statistica Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 11
    • 80051715867 scopus 로고    scopus 로고
    • Grouped orthogonal matching pursuit for variable selection and prediction
    • LOZANO A.C., SWIRSZCZ G., ABE N., Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction,in proc. NIPS'09, 2009.
    • (2009) Proc. NIPS'09
    • Lozano, A.C.1    Swirszcz, G.2    Abe, N.3
  • 16
    • 0035282695 scopus 로고    scopus 로고
    • GeneSplicer : A new computational method for splice site prediction
    • M. PERTEA, X. LIN, S. L. SALZBERG, GeneSplicer : a new computational method for splice site prediction Nucleic Acids Res, 29(5), 1185-90, 2001
    • (2001) Nucleic Acids Res , vol.29 , Issue.5 , pp. 1185-1190
    • Pertea, M.1    Lin, X.2    Salzberg, S.L.3
  • 18
    • 56449115709 scopus 로고    scopus 로고
    • The Group-Lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • ROTH V., FISCHER B. The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of the 25th ICML conference (ICML'08), 307, 848-855, 2008.
    • (2008) Proceedings of the 25th ICML Conference (ICML'08) , vol.307 , pp. 848-855
    • Roth, V.1    Fischer, B.2
  • 20
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R., Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc B., 58(1), 267-288, 1996.
    • (1996) J. Royal. Statist. Soc B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • TROPP J.A., Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Info. Theory, 50(10), 2231-2242, 2004.
    • (2004) IEEE Trans. Info. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 23
    • 2442441507 scopus 로고    scopus 로고
    • Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
    • YEO, G. W. AND BURGE, C. B., Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Computnl Biol., 11, 475494, 2004.
    • (2004) J. Computnl Biol. , vol.11 , pp. 475494
    • Yeo, G.W.1    Burge, C.B.2
  • 24
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • YUAN, M., LIN, Y., Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 4967, 2006.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 4967
    • Yuan, M.1    Lin, Y.2
  • 25
    • 84858744927 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • ZHANG, T., On the consistency of feature selection using greedy least squares regression, J. Machine Learning Research, 2008.
    • (2008) J. Machine Learning Research
    • Zhang, T.1
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the Elastic Net
    • ZOU, H., HASTIE T., Regularization and variable selection via the Elastic Net., J. R. Statist. Soc. B, 67(2) 301-320, 2005.
    • (2005) J. R. Statist. Soc. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.