-
1
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
BACH, F.R., Consistency of the Group Lasso and Multiple Kernel Learning, J. Mach. Learn. Res., 9, 1179-1225, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
2
-
-
0031586003
-
Prediction of complete gene structures in human genomic DNA
-
BURGE, C. AND KARLIN, S., Prediction of complete gene structures in human genomic DNA., J. Molec. Biol., 268, 7894, 1997.
-
(1997)
J. Molec. Biol.
, vol.268
, pp. 7894
-
-
Burge, C.1
Karlin, S.2
-
3
-
-
0000093674
-
Modeling dependencies in pre-mrna splicing signals
-
(eds S. Salzberg, D. Searls and S. Kasif), ch. 8. New York: Elsevier Science
-
BURGE, C., Modeling dependencies in pre-mrna splicing signals. In Computational Methods in Molecular Biology (eds S. Salzberg, D. Searls and S. Kasif), ch. 8, pp. 129164. New York: Elsevier Science. 1998.
-
(1998)
Computational Methods in Molecular Biology
, pp. 129164
-
-
Burge, C.1
-
4
-
-
84856683945
-
Orthogonal matching pursuit from noisy random measurements: A new analysis
-
FLETCHER A., RANGAN S., Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis, in proc. NIPS'09, 2009.
-
(2009)
Proc. NIPS'09
-
-
Fletcher, A.1
Rangan, S.2
-
5
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
FREUND. Y., SCHAPIRE, R. E., A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and system Sciences, Vol. 55(1), 119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
6
-
-
0003660631
-
Additive logistic regression: A statistical view of boosting
-
Stanford University
-
FRIEDMAN J., HASTIE T., TIBSHIRANI R., Additive Logistic Regression: a Statistical View of Boosting. Technical report, Department of Statistics, Stanford University, 1998.
-
(1998)
Technical Report, Department of Statistics
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
7
-
-
0003684449
-
-
Springer
-
HASTIE T., TIBSHIRANI R., FRIEDMAN J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2003.
-
(2003)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
84898981137
-
Learning exponential families in high dimensions: Strong convexity and sparsity
-
KAKADE S., SHAMIR O., SRIDHARAN K., TEWARI S., Learning Exponential Families in High Dimensions: Strong Convexity and Sparsity, AISTATS 2010.
-
(2010)
AISTATS
-
-
Kakade, S.1
Shamir, O.2
Sridharan, K.3
Tewari, S.4
-
10
-
-
33746126624
-
Blockwise sparse regression
-
KIM Y., KIM J., KIM Y., Blockwise sparse regression, Statistica Sinica, 16, 375-390, 2006.
-
(2006)
Statistica Sinica
, vol.16
, pp. 375-390
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
11
-
-
80051715867
-
Grouped orthogonal matching pursuit for variable selection and prediction
-
LOZANO A.C., SWIRSZCZ G., ABE N., Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction,in proc. NIPS'09, 2009.
-
(2009)
Proc. NIPS'09
-
-
Lozano, A.C.1
Swirszcz, G.2
Abe, N.3
-
12
-
-
0027842081
-
Matching pursuits with time-frequency dictionaries
-
MALLAT S., ZHANG Z., Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, 41, 3397-3415, 1993.
-
(1993)
IEEE Transactions on Signal Processing
, vol.41
, pp. 3397-3415
-
-
Mallat, S.1
Zhang, Z.2
-
13
-
-
84898978212
-
Boosting Algorithms as Gradient Descent
-
MASON L., BAXTER J., BARTLETT P., FREAN M., Boosting Algorithms as Gradient Descent, in Neural Information Processing Systems, Vol. 12, pp. 512518, 2000.
-
(2000)
Neural Information Processing Systems
, vol.12
, pp. 512518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
14
-
-
37849035696
-
The group lasso for logistic regression
-
MEIER L., VAN DE GEER, S., BÜHLMANN P., The group lasso for logistic regression, J. Royal Statistical Society: Series B, 70(1), 53-71, 2008.
-
(2008)
J. Royal Statistical Society: Series B
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
15
-
-
84862009593
-
-
Technical report
-
ROCHA G., WANG X., YU B., Asymptotic distribution and sparsistency for l1 penalized parametric Mestimators, with applications to linear SVM and logistic regression, Technical report, 2009
-
(2009)
Asymptotic Distribution and Sparsistency for l1 Penalized Parametric Mestimators, with Applications to Linear SVM and Logistic Regression
-
-
Rocha, G.1
Wang, X.2
Yu, B.3
-
16
-
-
0035282695
-
GeneSplicer : A new computational method for splice site prediction
-
M. PERTEA, X. LIN, S. L. SALZBERG, GeneSplicer : a new computational method for splice site prediction Nucleic Acids Res, 29(5), 1185-90, 2001
-
(2001)
Nucleic Acids Res
, vol.29
, Issue.5
, pp. 1185-1190
-
-
Pertea, M.1
Lin, X.2
Salzberg, S.L.3
-
18
-
-
56449115709
-
The Group-Lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
-
ROTH V., FISCHER B. The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of the 25th ICML conference (ICML'08), 307, 848-855, 2008.
-
(2008)
Proceedings of the 25th ICML Conference (ICML'08)
, vol.307
, pp. 848-855
-
-
Roth, V.1
Fischer, B.2
-
20
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R., Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc B., 58(1), 267-288, 1996.
-
(1996)
J. Royal. Statist. Soc B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
21
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
TROPP J.A., Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Info. Theory, 50(10), 2231-2242, 2004.
-
(2004)
IEEE Trans. Info. Theory
, vol.50
, Issue.10
, pp. 2231-2242
-
-
Tropp, J.A.1
-
22
-
-
0036643065
-
-
VINCENT P., BENGIO Y., Kernel matching pursuit, Machine Learning, 48. 165-187, 2002.
-
(2002)
Kernel Matching Pursuit, Machine Learning
, vol.48
, pp. 165-187
-
-
Vincent, P.1
Bengio, Y.2
-
23
-
-
2442441507
-
Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
-
YEO, G. W. AND BURGE, C. B., Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Computnl Biol., 11, 475494, 2004.
-
(2004)
J. Computnl Biol.
, vol.11
, pp. 475494
-
-
Yeo, G.W.1
Burge, C.B.2
-
24
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
YUAN, M., LIN, Y., Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 4967, 2006.
-
(2006)
J. R. Statist. Soc. B
, vol.68
, pp. 4967
-
-
Yuan, M.1
Lin, Y.2
-
25
-
-
84858744927
-
On the consistency of feature selection using greedy least squares regression
-
ZHANG, T., On the consistency of feature selection using greedy least squares regression, J. Machine Learning Research, 2008.
-
(2008)
J. Machine Learning Research
-
-
Zhang, T.1
-
27
-
-
34447335946
-
-
Manuscript
-
ZHAO, P, ROCHA, G. AND YU, B., Grouped and hierarchical model selection through composite absolute penalties, Manuscript, 2006.
-
(2006)
Grouped and Hierarchical Model Selection Through Composite Absolute Penalties
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
28
-
-
16244401458
-
Regularization and variable selection via the Elastic Net
-
ZOU, H., HASTIE T., Regularization and variable selection via the Elastic Net., J. R. Statist. Soc. B, 67(2) 301-320, 2005.
-
(2005)
J. R. Statist. Soc. B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|