메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

A unified computational model for revealing and predicting subtle subtypes of cancers

Author keywords

Cancer; Class discovery; Class prediction; Quadratic programming

Indexed keywords

ACUTE LEUKEMIA; BREAST CANCER; CANCER; CANCER GENE EXPRESSION; CANCER SUBTYPES; CLASS DISCOVERY; CLASS LABELS; CLASS PREDICTION; CLINICAL APPLICATION; COMMUNITY STANDARDS; COMPUTATIONAL FRAMEWORK; COMPUTATIONAL MODEL; GENE EXPRESSION DATA; GENE EXPRESSION PROFILING; NEXT-GENERATION SEQUENCING; OPTIMIZATION TOOLS; PROTEOMIC; UNIFIED FRAMEWORK;

EID: 84862183879     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-70     Document Type: Article
Times cited : (9)

References (31)
  • 1
    • 0035173209 scopus 로고    scopus 로고
    • Identification of disease genes by expression profiling
    • Bals R, Jany B. Identification of disease genes by expression profiling. Eur Respir J 2001, 18(5):882-889.
    • (2001) Eur Respir J , vol.18 , Issue.5 , pp. 882-889
    • Bals, R.1    Jany, B.2
  • 2
    • 0035845611 scopus 로고    scopus 로고
    • DNA microarray gene expression analysis technology and its application to neurological disorders
    • Greenberg SA. DNA microarray gene expression analysis technology and its application to neurological disorders. Neurology 2001, 57(5):755-761.
    • (2001) Neurology , vol.57 , Issue.5 , pp. 755-761
    • Greenberg, S.A.1
  • 3
    • 0036216372 scopus 로고    scopus 로고
    • Application of gene expression profiling to cardiovascular disease
    • Henriksen PA, Kotelevtsev Y. Application of gene expression profiling to cardiovascular disease. Cardiovasc Res 2002, 54(1):16-24.
    • (2002) Cardiovasc Res , vol.54 , Issue.1 , pp. 16-24
    • Henriksen, P.A.1    Kotelevtsev, Y.2
  • 4
    • 77956820862 scopus 로고    scopus 로고
    • Current Clinical and Pharmaceutical Applications of Microarrays: From Disease Biomarkers Discovery to Automated Diagnostics
    • Lagraulet A. Current Clinical and Pharmaceutical Applications of Microarrays: From Disease Biomarkers Discovery to Automated Diagnostics. J Assoc Lab Autom 2010, 15(5):405-413.
    • (2010) J Assoc Lab Autom , vol.15 , Issue.5 , pp. 405-413
    • Lagraulet, A.1
  • 6
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Nat Acad Sci USA 2004, 101(12):4164-4169.
    • (2004) Proc Nat Acad Sci USA , vol.101 , Issue.12 , pp. 4164-4169
    • Brunet, J.-P.1    Tamayo, P.2    Golub, T.R.3    Mesirov, J.P.4
  • 7
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005, 21(21):3970-3975.
    • (2005) Bioinformatics , vol.21 , Issue.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 8
    • 0242475332 scopus 로고    scopus 로고
    • An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data
    • Hsu AL, Tang S-L, Halgamuge SK. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics 2003, 19(16):2131-2140.
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2131-2140
    • Hsu, A.L.1    Tang, S.-L.2    Halgamuge, S.K.3
  • 9
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 2007, 23(12):1495-1502.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 10
    • 0037620686 scopus 로고    scopus 로고
    • SamCluster: an integrated scheme for automatic discovery of sample classes using gene expression profile
    • Li W, Fan M, Xiong M. SamCluster: an integrated scheme for automatic discovery of sample classes using gene expression profile. Bioinformatics 2003, 19(7):811-817.
    • (2003) Bioinformatics , vol.19 , Issue.7 , pp. 811-817
    • Li, W.1    Fan, M.2    Xiong, M.3
  • 11
    • 49549087973 scopus 로고    scopus 로고
    • Clinically driven semi-supervised class discovery in gene expression data
    • Steinfeld I, Navon R, Ardigo D, Zavaroni I, Yakhini Z. Clinically driven semi-supervised class discovery in gene expression data. Bioinformatics 2008, 24(16):i90-i97.
    • (2008) Bioinformatics , vol.24 , Issue.16
    • Steinfeld, I.1    Navon, R.2    Ardigo, D.3    Zavaroni, I.4    Yakhini, Z.5
  • 12
    • 13244258381 scopus 로고    scopus 로고
    • Iterative class discovery and feature selection using Minimal Spanning Trees
    • Varma S, Simon R. Iterative class discovery and feature selection using Minimal Spanning Trees. BMC Bioinforma 2004, 5:126.
    • (2004) BMC Bioinforma , vol.5 , pp. 126
    • Varma, S.1    Simon, R.2
  • 13
    • 0010449495 scopus 로고    scopus 로고
    • Identifying splits with clear separation: a new class discovery method for gene expression data
    • von Heydebreck A, Huber W, Poustka A, Vingron M. Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics 2001, 17(suppl 1):S107-S114.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • von Heydebreck, A.1    Huber, W.2    Poustka, A.3    Vingron, M.4
  • 14
    • 36448947175 scopus 로고    scopus 로고
    • Graph-based consensus clustering for class discovery from gene expression data
    • Yu Z, Wong H-S, Wang H. Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 2007, 23(21):2888-2896.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2888-2896
    • Yu, Z.1    Wong, H.-S.2    Wang, H.3
  • 16
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 17
    • 16344395483 scopus 로고    scopus 로고
    • A novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples
    • Ji Y, Tsui K-W, Kim K. A novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples. Bioinformatics 2005, 21(7):1055-1061.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1055-1061
    • Ji, Y.1    Tsui, K.-W.2    Kim, K.3
  • 18
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee Y, Lee C-K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 2003, 19(9):1132-1139.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.-K.2
  • 19
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21(20):3896-3904.
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.3    Winslow, R.L.4    Geman, D.5
  • 20
    • 8844241460 scopus 로고    scopus 로고
    • Class discovery and classification of tumor samples using mixture modeling of gene expression data}a unified approach
    • Alexandridis R, Lin S, Irwin M. Class discovery and classification of tumor samples using mixture modeling of gene expression data}a unified approach. Bioinformatics 2004, 20(16):2545-2552.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2545-2552
    • Alexandridis, R.1    Lin, S.2    Irwin, M.3
  • 22
    • 34548583274 scopus 로고    scopus 로고
    • A Tutorial on Spectral Clustering
    • von Luxburg U. A Tutorial on Spectral Clustering. Stat Comput 2007, 17:395-416.
    • (2007) Stat Comput , vol.17 , pp. 395-416
    • von Luxburg, U.1
  • 24
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by Passing Messages Between Data Points
    • Frey BJ, Dueck D. Clustering by Passing Messages Between Data Points. Science 2007, 315(5814):972-976.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 26
    • 41949091653 scopus 로고    scopus 로고
    • A simple and exact Laplacian clustering of complex networking phenomena: Application to gene expression profiles
    • Kim C, Cheon M, Kang M, Chang I. A simple and exact Laplacian clustering of complex networking phenomena: Application to gene expression profiles. Proc Nat Acad Sci USA 2008, 105(11):4083-4087.
    • (2008) Proc Nat Acad Sci USA , vol.105 , Issue.11 , pp. 4083-4087
    • Kim, C.1    Cheon, M.2    Kang, M.3    Chang, I.4
  • 28
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S. Least squares quantization in PCM. Inf Theory, IEEE Trans on 1982, 28(2):129-137.
    • (1982) Inf Theory, IEEE Trans on , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 31
    • 48249092766 scopus 로고    scopus 로고
    • Semi Supervised Spectral Clustering for Regulatory Module Discovery
    • Berlin/Heidelberg, Springer-Verlag, Bairoch A, Cohen-Boulakia S, Froidevaux C, vol. 5109
    • Mishra A, Gillies D. Semi Supervised Spectral Clustering for Regulatory Module Discovery. Data Integration in the Life Sciences 2008, 192-203. Berlin/Heidelberg, Springer-Verlag, Bairoch A, Cohen-Boulakia S, Froidevaux C, vol. 5109.
    • (2008) Data Integration in the Life Sciences , pp. 192-203
    • Mishra, A.1    Gillies, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.