-
1
-
-
0035173209
-
Identification of disease genes by expression profiling
-
Bals R, Jany B. Identification of disease genes by expression profiling. Eur Respir J 2001, 18(5):882-889.
-
(2001)
Eur Respir J
, vol.18
, Issue.5
, pp. 882-889
-
-
Bals, R.1
Jany, B.2
-
2
-
-
0035845611
-
DNA microarray gene expression analysis technology and its application to neurological disorders
-
Greenberg SA. DNA microarray gene expression analysis technology and its application to neurological disorders. Neurology 2001, 57(5):755-761.
-
(2001)
Neurology
, vol.57
, Issue.5
, pp. 755-761
-
-
Greenberg, S.A.1
-
3
-
-
0036216372
-
Application of gene expression profiling to cardiovascular disease
-
Henriksen PA, Kotelevtsev Y. Application of gene expression profiling to cardiovascular disease. Cardiovasc Res 2002, 54(1):16-24.
-
(2002)
Cardiovasc Res
, vol.54
, Issue.1
, pp. 16-24
-
-
Henriksen, P.A.1
Kotelevtsev, Y.2
-
4
-
-
77956820862
-
Current Clinical and Pharmaceutical Applications of Microarrays: From Disease Biomarkers Discovery to Automated Diagnostics
-
Lagraulet A. Current Clinical and Pharmaceutical Applications of Microarrays: From Disease Biomarkers Discovery to Automated Diagnostics. J Assoc Lab Autom 2010, 15(5):405-413.
-
(2010)
J Assoc Lab Autom
, vol.15
, Issue.5
, pp. 405-413
-
-
Lagraulet, A.1
-
5
-
-
0033569406
-
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
-
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 1999, 286(5439):531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
-
6
-
-
1642529511
-
Metagenes and molecular pattern discovery using matrix factorization
-
Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Nat Acad Sci USA 2004, 101(12):4164-4169.
-
(2004)
Proc Nat Acad Sci USA
, vol.101
, Issue.12
, pp. 4164-4169
-
-
Brunet, J.-P.1
Tamayo, P.2
Golub, T.R.3
Mesirov, J.P.4
-
7
-
-
27744601822
-
Improving molecular cancer class discovery through sparse non-negative matrix factorization
-
Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005, 21(21):3970-3975.
-
(2005)
Bioinformatics
, vol.21
, Issue.21
, pp. 3970-3975
-
-
Gao, Y.1
Church, G.2
-
8
-
-
0242475332
-
An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data
-
Hsu AL, Tang S-L, Halgamuge SK. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics 2003, 19(16):2131-2140.
-
(2003)
Bioinformatics
, vol.19
, Issue.16
, pp. 2131-2140
-
-
Hsu, A.L.1
Tang, S.-L.2
Halgamuge, S.K.3
-
9
-
-
34547844077
-
Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
-
Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 2007, 23(12):1495-1502.
-
(2007)
Bioinformatics
, vol.23
, Issue.12
, pp. 1495-1502
-
-
Kim, H.1
Park, H.2
-
10
-
-
0037620686
-
SamCluster: an integrated scheme for automatic discovery of sample classes using gene expression profile
-
Li W, Fan M, Xiong M. SamCluster: an integrated scheme for automatic discovery of sample classes using gene expression profile. Bioinformatics 2003, 19(7):811-817.
-
(2003)
Bioinformatics
, vol.19
, Issue.7
, pp. 811-817
-
-
Li, W.1
Fan, M.2
Xiong, M.3
-
11
-
-
49549087973
-
Clinically driven semi-supervised class discovery in gene expression data
-
Steinfeld I, Navon R, Ardigo D, Zavaroni I, Yakhini Z. Clinically driven semi-supervised class discovery in gene expression data. Bioinformatics 2008, 24(16):i90-i97.
-
(2008)
Bioinformatics
, vol.24
, Issue.16
-
-
Steinfeld, I.1
Navon, R.2
Ardigo, D.3
Zavaroni, I.4
Yakhini, Z.5
-
12
-
-
13244258381
-
Iterative class discovery and feature selection using Minimal Spanning Trees
-
Varma S, Simon R. Iterative class discovery and feature selection using Minimal Spanning Trees. BMC Bioinforma 2004, 5:126.
-
(2004)
BMC Bioinforma
, vol.5
, pp. 126
-
-
Varma, S.1
Simon, R.2
-
13
-
-
0010449495
-
Identifying splits with clear separation: a new class discovery method for gene expression data
-
von Heydebreck A, Huber W, Poustka A, Vingron M. Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics 2001, 17(suppl 1):S107-S114.
-
(2001)
Bioinformatics
, vol.17
, Issue.SUPPL. 1
-
-
von Heydebreck, A.1
Huber, W.2
Poustka, A.3
Vingron, M.4
-
14
-
-
36448947175
-
Graph-based consensus clustering for class discovery from gene expression data
-
Yu Z, Wong H-S, Wang H. Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 2007, 23(21):2888-2896.
-
(2007)
Bioinformatics
, vol.23
, Issue.21
, pp. 2888-2896
-
-
Yu, Z.1
Wong, H.-S.2
Wang, H.3
-
15
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. ProcNat Acad Sci USA 2000, 97(1):262-267.
-
(2000)
ProcNat Acad Sci USA
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares, M.7
Haussler, D.8
-
16
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
17
-
-
16344395483
-
A novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples
-
Ji Y, Tsui K-W, Kim K. A novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples. Bioinformatics 2005, 21(7):1055-1061.
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1055-1061
-
-
Ji, Y.1
Tsui, K.-W.2
Kim, K.3
-
18
-
-
0038729565
-
Classification of multiple cancer types by multicategory support vector machines using gene expression data
-
Lee Y, Lee C-K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 2003, 19(9):1132-1139.
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1132-1139
-
-
Lee, Y.1
Lee, C.-K.2
-
19
-
-
27544451127
-
Simple decision rules for classifying human cancers from gene expression profiles
-
Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21(20):3896-3904.
-
(2005)
Bioinformatics
, vol.21
, Issue.20
, pp. 3896-3904
-
-
Tan, A.C.1
Naiman, D.Q.2
Xu, L.3
Winslow, R.L.4
Geman, D.5
-
20
-
-
8844241460
-
Class discovery and classification of tumor samples using mixture modeling of gene expression data}a unified approach
-
Alexandridis R, Lin S, Irwin M. Class discovery and classification of tumor samples using mixture modeling of gene expression data}a unified approach. Bioinformatics 2004, 20(16):2545-2552.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2545-2552
-
-
Alexandridis, R.1
Lin, S.2
Irwin, M.3
-
21
-
-
34548025132
-
Asurvey of kernel and spectral methods for clustering
-
Filippone M, Camastra F, Masulli F, Rovetta S. Asurvey of kernel and spectral methods for clustering. Pattern Recognit 2007, 41:176-190.
-
(2007)
Pattern Recognit
, vol.41
, pp. 176-190
-
-
Filippone, M.1
Camastra, F.2
Masulli, F.3
Rovetta, S.4
-
22
-
-
34548583274
-
A Tutorial on Spectral Clustering
-
von Luxburg U. A Tutorial on Spectral Clustering. Stat Comput 2007, 17:395-416.
-
(2007)
Stat Comput
, vol.17
, pp. 395-416
-
-
von Luxburg, U.1
-
23
-
-
51749084898
-
Robust and efficient identification of biomarkers by classifying features on graphs
-
Hwang T, Sicotte H, Tian Z, Wu B, Kocher J-P, Wigle DA, Kumar V, Kuang R. Robust and efficient identification of biomarkers by classifying features on graphs. Bioinformatics 2008, 24(18):2023-2029.
-
(2008)
Bioinformatics
, vol.24
, Issue.18
, pp. 2023-2029
-
-
Hwang, T.1
Sicotte, H.2
Tian, Z.3
Wu, B.4
Kocher, J.-P.5
Wigle, D.A.6
Kumar, V.7
Kuang, R.8
-
24
-
-
33847172327
-
Clustering by Passing Messages Between Data Points
-
Frey BJ, Dueck D. Clustering by Passing Messages Between Data Points. Science 2007, 315(5814):972-976.
-
(2007)
Science
, vol.315
, Issue.5814
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
25
-
-
58849114639
-
Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer
-
Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, Eneman J, Crocker A, White J, Tessitore J, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 2009, 114(1):47-62.
-
(2009)
Breast Cancer Res Treat
, vol.114
, Issue.1
, pp. 47-62
-
-
Casey, T.1
Bond, J.2
Tighe, S.3
Hunter, T.4
Lintault, L.5
Patel, O.6
Eneman, J.7
Crocker, A.8
White, J.9
Tessitore, J.10
-
26
-
-
41949091653
-
A simple and exact Laplacian clustering of complex networking phenomena: Application to gene expression profiles
-
Kim C, Cheon M, Kang M, Chang I. A simple and exact Laplacian clustering of complex networking phenomena: Application to gene expression profiles. Proc Nat Acad Sci USA 2008, 105(11):4083-4087.
-
(2008)
Proc Nat Acad Sci USA
, vol.105
, Issue.11
, pp. 4083-4087
-
-
Kim, C.1
Cheon, M.2
Kang, M.3
Chang, I.4
-
28
-
-
0020102027
-
Least squares quantization in PCM
-
Lloyd S. Least squares quantization in PCM. Inf Theory, IEEE Trans on 1982, 28(2):129-137.
-
(1982)
Inf Theory, IEEE Trans on
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
29
-
-
67650727359
-
JClust: A clustering and visualization toolbox
-
Pavlopoulos GA, Moschopoulos CN, Hooper SD, Schneider R, Kossida S. jClust: A clustering and visualization toolbox. Bioinformatics 2009, 25(15):1994-1996.
-
(2009)
Bioinformatics
, vol.25
, Issue.15
, pp. 1994-1996
-
-
Pavlopoulos, G.A.1
Moschopoulos, C.N.2
Hooper, S.D.3
Schneider, R.4
Kossida, S.5
-
30
-
-
60349118491
-
Self-Tuning Semi-Supervised Spectral Clustering
-
Yang C, Zhang X, Jiao L, Wang G. Self-Tuning Semi-Supervised Spectral Clustering. Comput Intell Secur, Int Conf on 2008, 1:1-5.
-
(2008)
Comput Intell Secur, Int Conf on
, vol.1
, pp. 1-5
-
-
Yang, C.1
Zhang, X.2
Jiao, L.3
Wang, G.4
-
31
-
-
48249092766
-
Semi Supervised Spectral Clustering for Regulatory Module Discovery
-
Berlin/Heidelberg, Springer-Verlag, Bairoch A, Cohen-Boulakia S, Froidevaux C, vol. 5109
-
Mishra A, Gillies D. Semi Supervised Spectral Clustering for Regulatory Module Discovery. Data Integration in the Life Sciences 2008, 192-203. Berlin/Heidelberg, Springer-Verlag, Bairoch A, Cohen-Boulakia S, Froidevaux C, vol. 5109.
-
(2008)
Data Integration in the Life Sciences
, pp. 192-203
-
-
Mishra, A.1
Gillies, D.2
|