메뉴 건너뛰기




Volumn 24, Issue 18, 2008, Pages 2023-2029

Robust and efficient identification of biomarkers by classifying features on graphs

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 51749084898     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn383     Document Type: Article
Times cited : (35)

References (20)
  • 1
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • Chapelle,E.O. et al, eds, MIT Press, Cambridge, MA
    • Bengio,Y. et al. (2006) Label propagation and quadratic criterion. In Chapelle,E.O. et al. (eds), Semi-Supervised Learning. MIT Press, Cambridge, MA.
    • (2006) Semi-Supervised Learning
    • Bengio, Y.1
  • 3
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang,H. et al. (2007) Network-based classification of breast cancer metastasis. Mol. Sys. Biol., 3, 140.
    • (2007) Mol. Sys. Biol , vol.3 , pp. 140
    • Chuang, H.1
  • 4
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit,S. et al. (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sin., 12, 111-139.
    • (2002) Stat. Sin , vol.12 , pp. 111-139
    • Dudoit, S.1
  • 5
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 6
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • Gevaert,O. et al. (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22, e184-e190.
    • (2006) Bioinformatics , vol.22
    • Gevaert, O.1
  • 7
    • 0001969211 scopus 로고    scopus 로고
    • Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
    • Gribskov,M. and Robinson, N.L. (1996) Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput. Chem., 20, 25-33.
    • (1996) Comput. Chem , vol.20 , pp. 25-33
    • Gribskov, M.1    Robinson, N.L.2
  • 8
    • 27144465224 scopus 로고    scopus 로고
    • Motif-based protein ranking by network propagation
    • Kuang,R. et al. (2005) Motif-based protein ranking by network propagation. Bioinformatics, 21, 3711-3718.
    • (2005) Bioinformatics , vol.21 , pp. 3711-3718
    • Kuang, R.1
  • 9
    • 34250316881 scopus 로고    scopus 로고
    • Genetic association studies of cancer: Where do we go from here?
    • Rebbeck,T.R. et al. (2007) Genetic association studies of cancer: where do we go from here? Cancer Epidemiol. Biomarkers Prev., 16, 864-865.
    • (2007) Cancer Epidemiol. Biomarkers Prev , vol.16 , pp. 864-865
    • Rebbeck, T.R.1
  • 10
    • 0023179570 scopus 로고
    • Observation of phase transitions in spreading activation networks
    • Shrager,J. et al. (1987) Observation of phase transitions in spreading activation networks. Science, 236, 1092-1094.
    • (1987) Science , vol.236 , pp. 1092-1094
    • Shrager, J.1
  • 11
    • 33845881963 scopus 로고    scopus 로고
    • Improved breast cancer prognosis through the combination of clinical and genetic markers
    • Sun,Y. et al. (2007) Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 23 30-37.
    • (2007) Bioinformatics , vol.23 , pp. 30-37
    • Sun, Y.1
  • 12
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda,K. et al. (2005) Fast protein classification with multiple networks. Bioinformatics, 21, ii59-ii65.
    • (2005) Bioinformatics , vol.21
    • Tsuda, K.1
  • 13
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • van de Vijver,M.J. et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347 1999-2009.
    • (2002) N. Engl. J. Med , vol.347 , pp. 1999-2009
    • van de Vijver, M.J.1
  • 14
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer,L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1
  • 16
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymphnode-negative primary breast cancer
    • Wang,Y. et al. (2005) Gene-expression profiles to predict distant metastasis of lymphnode-negative primary breast cancer. Lancet, 365, 671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1
  • 17
    • 2342475726 scopus 로고    scopus 로고
    • Protein ranking: From local to global structure in the protein similarity network
    • Weston,J. et al. (2004) Protein ranking: From local to global structure in the protein similarity network. Proc. Natl Acad. Sci. USA, 101, 6559-6563.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 6559-6563
    • Weston, J.1
  • 18
    • 36148981192 scopus 로고    scopus 로고
    • Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer
    • Yu,J.X. et al. (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer, 7, 182.
    • (2007) BMC Cancer , vol.7 , pp. 182
    • Yu, J.X.1
  • 19
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • Zhang,H. et al. (2006) Gene selection using support vector machines with non-convex penalty. Bioinformatics, 22, 88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.1
  • 20
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • MIT Press, Cambridge, MA, pp
    • Zhou,D. et al. (2004) Learning with local and global consistency. In Advances in Neural Information Processing Systems, Vol. 16. MIT Press, Cambridge, MA, pp. 321-328.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 321-328
    • Zhou, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.