메뉴 건너뛰기




Volumn 37, Issue 6, 2012, Pages 248-253

Design principles of interconnections between chromatin and pre-mRNA splicing

Author keywords

Chromatin; Regulatory networks; RNA polymerase II; Splicing; Transcription

Indexed keywords

HISTONE H3; MESSENGER RNA PRECURSOR; RNA BINDING PROTEIN; RNA POLYMERASE II; SMALL NUCLEAR RIBONUCLEOPROTEIN;

EID: 84861925259     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.02.002     Document Type: Review
Times cited : (45)

References (70)
  • 1
    • 75849145292 scopus 로고    scopus 로고
    • Expansion of the eukaryotic proteome by alternative splicing
    • Nilsen T.W., Graveley B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463:457-463.
    • (2010) Nature , vol.463 , pp. 457-463
    • Nilsen, T.W.1    Graveley, B.R.2
  • 2
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q., et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1
  • 3
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang E.T., et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1
  • 4
    • 60149093432 scopus 로고    scopus 로고
    • RNA and disease
    • Cooper T.A., et al. RNA and disease. Cell 2009, 136:777-793.
    • (2009) Cell , vol.136 , pp. 777-793
    • Cooper, T.A.1
  • 5
    • 0017688583 scopus 로고
    • An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA
    • Chow L.T., et al. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 1977, 12:1-8.
    • (1977) Cell , vol.12 , pp. 1-8
    • Chow, L.T.1
  • 6
    • 0344622123 scopus 로고
    • Spliced segments at the 5' terminus of adenovirus 2 late mRNA
    • Berget S.M., et al. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. U.S.A. 1977, 74:3171-3175.
    • (1977) Proc. Natl. Acad. Sci. U.S.A. , vol.74 , pp. 3171-3175
    • Berget, S.M.1
  • 7
    • 0017669759 scopus 로고
    • Two adenovirus mRNAs have a common 5' terminal leader sequence encoded at least 10kb upstream from their main coding regions
    • Klessig D.F. Two adenovirus mRNAs have a common 5' terminal leader sequence encoded at least 10kb upstream from their main coding regions. Cell 1977, 12:9-21.
    • (1977) Cell , vol.12 , pp. 9-21
    • Klessig, D.F.1
  • 8
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • McCracken S., et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997, 385:357-361.
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1
  • 9
    • 61349098460 scopus 로고    scopus 로고
    • Differential chromatin marking of introns and expressed exons by H3K36me3
    • Kolasinska-Zwierz P., et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 2009, 41:376-381.
    • (2009) Nat. Genet. , vol.41 , pp. 376-381
    • Kolasinska-Zwierz, P.1
  • 10
    • 70350013550 scopus 로고    scopus 로고
    • Biased chromatin signatures around polyadenylation sites and exons
    • Spies N., et al. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 2009, 36:245-254.
    • (2009) Mol. Cell , vol.36 , pp. 245-254
    • Spies, N.1
  • 11
    • 70349333201 scopus 로고    scopus 로고
    • Nucleosomes are well positioned in exons and carry characteristic histone modifications
    • Andersson R., et al. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 2009, 19:1732-1741.
    • (2009) Genome Res. , vol.19 , pp. 1732-1741
    • Andersson, R.1
  • 12
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • Schwartz S., et al. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009, 16:990-995.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 990-995
    • Schwartz, S.1
  • 13
    • 69949124307 scopus 로고    scopus 로고
    • Nucleosome positioning as a determinant of exon recognition
    • Tilgner H., et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 2009, 16:996-1001.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 996-1001
    • Tilgner, H.1
  • 14
    • 70350235050 scopus 로고    scopus 로고
    • Nucleosomes are preferentially positioned at exons in somatic and sperm cells
    • Nahkuri S., et al. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 2009, 8:3420-3424.
    • (2009) Cell Cycle , vol.8 , pp. 3420-3424
    • Nahkuri, S.1
  • 15
    • 77149175671 scopus 로고    scopus 로고
    • Regulation of alternative splicing by histone modifications
    • Luco R.F., et al. Regulation of alternative splicing by histone modifications. Science 2010, 327:996-1000.
    • (2010) Science , vol.327 , pp. 996-1000
    • Luco, R.F.1
  • 16
    • 80052445151 scopus 로고    scopus 로고
    • Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36
    • de Almeida S.F., et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 2011, 18:977-983.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 977-983
    • de Almeida, S.F.1
  • 17
    • 80052020631 scopus 로고    scopus 로고
    • Pre-mRNA splicing is a determinant of histone H3K36 methylation
    • Kim S., et al. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13564-13569.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 13564-13569
    • Kim, S.1
  • 18
    • 80052594686 scopus 로고    scopus 로고
    • Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner
    • Zhou H.L., et al. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:E627-E635.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108
    • Zhou, H.L.1
  • 19
    • 60349104299 scopus 로고    scopus 로고
    • The spliceosome: design principles of a dynamic RNP machine
    • Wahl M.C., et al. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
    • (2009) Cell , vol.136 , pp. 701-718
    • Wahl, M.C.1
  • 20
    • 18344364099 scopus 로고    scopus 로고
    • Understanding alternative splicing: towards a cellular code
    • Matlin A.J., et al. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005, 6:386-398.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 386-398
    • Matlin, A.J.1
  • 21
    • 77952029221 scopus 로고    scopus 로고
    • Deciphering the splicing code
    • Barash Y., et al. Deciphering the splicing code. Nature 2010, 465:53-59.
    • (2010) Nature , vol.465 , pp. 53-59
    • Barash, Y.1
  • 22
    • 81855183655 scopus 로고    scopus 로고
    • Single-molecule imaging of transcriptionally coupled and uncoupled splicing
    • Vargas D.Y., et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 2011, 147:1054-1065.
    • (2011) Cell , vol.147 , pp. 1054-1065
    • Vargas, D.Y.1
  • 23
    • 70350005395 scopus 로고    scopus 로고
    • 'Cotranscriptionality': the transcription elongation complex as a nexus for nuclear transactions
    • Perales R., Bentley D. 'Cotranscriptionality': the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 2009, 36:178-191.
    • (2009) Mol. Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 24
    • 60149110358 scopus 로고    scopus 로고
    • Pre-mRNA processing reaches back to transcription and ahead to translation
    • Moore M.J., Proudfoot N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136:688-700.
    • (2009) Cell , vol.136 , pp. 688-700
    • Moore, M.J.1    Proudfoot, N.J.2
  • 25
    • 21244493903 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex
    • Gornemann J., et al. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 2005, 19:53-63.
    • (2005) Mol. Cell , vol.19 , pp. 53-63
    • Gornemann, J.1
  • 26
    • 21244469725 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast
    • Lacadie S.A., Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol. Cell 2005, 19:65-75.
    • (2005) Mol. Cell , vol.19 , pp. 65-75
    • Lacadie, S.A.1    Rosbash, M.2
  • 27
    • 0024021747 scopus 로고
    • Splice site selection, rate of splicing, and alternative splicing on nascent transcripts
    • Beyer A.L., Osheim Y.N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988, 2:754-765.
    • (1988) Genes Dev. , vol.2 , pp. 754-765
    • Beyer, A.L.1    Osheim, Y.N.2
  • 28
    • 78650961149 scopus 로고    scopus 로고
    • Epigenetics in alternative pre-mRNA splicing
    • Luco R.F., et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
    • (2011) Cell , vol.144 , pp. 16-26
    • Luco, R.F.1
  • 29
    • 0026000952 scopus 로고
    • DNA template effect on RNA splicing: two copies of the same gene in the same nucleus are processed differently
    • Adami G., Babiss L.E. DNA template effect on RNA splicing: two copies of the same gene in the same nucleus are processed differently. EMBO J. 1991, 10:3457-3465.
    • (1991) EMBO J. , vol.10 , pp. 3457-3465
    • Adami, G.1    Babiss, L.E.2
  • 30
    • 0037044769 scopus 로고    scopus 로고
    • Transcriptional activators differ in their abilities to control alternative splicing
    • Nogues G., et al. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 2002, 277:43110-43114.
    • (2002) J. Biol. Chem. , vol.277 , pp. 43110-43114
    • Nogues, G.1
  • 31
    • 0141888375 scopus 로고    scopus 로고
    • A slow RNA polymerase II affects alternative splicing in vivo
    • de la Mata M., et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 2003, 12:525-532.
    • (2003) Mol. Cell , vol.12 , pp. 525-532
    • de la Mata, M.1
  • 32
    • 63149192174 scopus 로고    scopus 로고
    • Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing
    • Schor I.E., et al. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4325-4330.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4325-4330
    • Schor, I.E.1
  • 33
    • 67650299463 scopus 로고    scopus 로고
    • Control of alternative splicing through siRNA-mediated transcriptional gene silencing
    • Allo M., et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 2009, 16:717-724.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 717-724
    • Allo, M.1
  • 34
    • 80052411399 scopus 로고    scopus 로고
    • Chromatin and alternative splicing
    • Allo M., et al. Chromatin and alternative splicing. Cold Spring Harb. Symp. Quant. Biol. 2010, 75:103-111.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 103-111
    • Allo, M.1
  • 35
    • 79952364016 scopus 로고    scopus 로고
    • Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons
    • Saint-Andre V., et al. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 2011, 18:337-344.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 337-344
    • Saint-Andre, V.1
  • 36
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla S., et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74-79.
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1
  • 37
    • 44449142796 scopus 로고    scopus 로고
    • The CTD role in cotranscriptional RNA processing and surveillance
    • de Almeida S.F., Carmo-Fonseca M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 2008, 582:1971-1976.
    • (2008) FEBS Lett. , vol.582 , pp. 1971-1976
    • de Almeida, S.F.1    Carmo-Fonseca, M.2
  • 38
    • 36249027156 scopus 로고    scopus 로고
    • Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing
    • Sims R.J., et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 2007, 28:665-676.
    • (2007) Mol. Cell , vol.28 , pp. 665-676
    • Sims, R.J.1
  • 39
    • 30044441988 scopus 로고    scopus 로고
    • The human SWI/SNF subunit Brm is a regulator of alternative splicing
    • Batsche E., et al. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 2006, 13:22-29.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 22-29
    • Batsche, E.1
  • 40
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr S.S., et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 2002, 31:64-68.
    • (2002) Nat. Genet. , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1
  • 41
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • Churchman L.S., Weissman J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011, 469:368-373.
    • (2011) Nature , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 42
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B., et al. The role of chromatin during transcription. Cell 2007, 128:707-719.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1
  • 43
    • 77952569347 scopus 로고    scopus 로고
    • Inducible gene expression: diverse regulatory mechanisms
    • Weake V.M., Workman J.L. Inducible gene expression: diverse regulatory mechanisms. Nat. Rev. Genet. 2010, 11:426-437.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 426-437
    • Weake, V.M.1    Workman, J.L.2
  • 44
    • 0036170767 scopus 로고    scopus 로고
    • Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression
    • Strahl B.D., et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 2002, 22:1298-1306.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1298-1306
    • Strahl, B.D.1
  • 45
    • 27444436367 scopus 로고    scopus 로고
    • Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase
    • Sun X.J., et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 2005, 280:35261-35271.
    • (2005) J. Biol. Chem. , vol.280 , pp. 35261-35271
    • Sun, X.J.1
  • 46
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza M.J., et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005, 123:581-592.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1
  • 47
    • 29144468972 scopus 로고    scopus 로고
    • Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
    • Joshi A.A., Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 2005, 20:971-978.
    • (2005) Mol. Cell , vol.20 , pp. 971-978
    • Joshi, A.A.1    Struhl, K.2
  • 48
    • 27744587302 scopus 로고    scopus 로고
    • Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
    • Keogh M.C., et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005, 123:593-605.
    • (2005) Cell , vol.123 , pp. 593-605
    • Keogh, M.C.1
  • 49
    • 79955008193 scopus 로고    scopus 로고
    • KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription
    • Xie L., et al. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J. 2011, 30:1473-1484.
    • (2011) EMBO J. , vol.30 , pp. 1473-1484
    • Xie, L.1
  • 50
    • 0025906388 scopus 로고
    • A generic intron increases gene expression in transgenic mice
    • Choi T., et al. A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 1991, 11:3070-3074.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 3070-3074
    • Choi, T.1
  • 51
    • 0025966661 scopus 로고
    • Heterologous introns can enhance expression of transgenes in mice
    • Palmiter R.D., et al. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:478-482.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 478-482
    • Palmiter, R.D.1
  • 52
    • 0032876602 scopus 로고    scopus 로고
    • A handful of intron-containing genes produces the lion's share of yeast mRNA
    • Ares M., et al. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 1999, 5:1138-1139.
    • (1999) RNA , vol.5 , pp. 1138-1139
    • Ares, M.1
  • 53
    • 0035924345 scopus 로고    scopus 로고
    • Stimulatory effect of splicing factors on transcriptional elongation
    • Fong Y.W., Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 2001, 414:929-933.
    • (2001) Nature , vol.414 , pp. 929-933
    • Fong, Y.W.1    Zhou, Q.2
  • 54
    • 49449116959 scopus 로고    scopus 로고
    • The splicing factor SC35 has an active role in transcriptional elongation
    • Lin S., et al. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 2008, 15:819-826.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 819-826
    • Lin, S.1
  • 55
    • 79851472312 scopus 로고    scopus 로고
    • The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing
    • Brody Y., et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 2011, 9:e1000573.
    • (2011) PLoS Biol. , vol.9
    • Brody, Y.1
  • 56
    • 0036829698 scopus 로고    scopus 로고
    • Promoter proximal splice sites enhance transcription
    • Furger A., et al. Promoter proximal splice sites enhance transcription. Genes Dev. 2002, 16:2792-2799.
    • (2002) Genes Dev. , vol.16 , pp. 2792-2799
    • Furger, A.1
  • 57
    • 0036829065 scopus 로고    scopus 로고
    • U1 snRNA associates with TFIIH and regulates transcriptional initiation
    • Kwek K.Y., et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat. Struct. Biol. 2002, 9:800-805.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 800-805
    • Kwek, K.Y.1
  • 58
    • 38649096939 scopus 로고    scopus 로고
    • A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo
    • Damgaard C.K., et al. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol. Cell 2008, 29:271-278.
    • (2008) Mol. Cell , vol.29 , pp. 271-278
    • Damgaard, C.K.1
  • 59
    • 80455164573 scopus 로고    scopus 로고
    • Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes
    • Martins S.B., et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes. Nat. Struct. Mol. Biol. 2011, 18:1115-1123.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1115-1123
    • Martins, S.B.1
  • 60
    • 16244384503 scopus 로고    scopus 로고
    • A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
    • Kizer K.O., et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 2005, 25:3305-3316.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3305-3316
    • Kizer, K.O.1
  • 61
    • 29144448731 scopus 로고    scopus 로고
    • Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1
    • Li M., et al. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:17636-17641.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17636-17641
    • Li, M.1
  • 62
    • 33644869317 scopus 로고    scopus 로고
    • Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription
    • Vojnic E., et al. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J. Biol. Chem. 2006, 281:13-15.
    • (2006) J. Biol. Chem. , vol.281 , pp. 13-15
    • Vojnic, E.1
  • 63
    • 77951920690 scopus 로고    scopus 로고
    • C-Myc regulates transcriptional pause release
    • Rahl P.B., et al. c-Myc regulates transcriptional pause release. Cell 2010, 141:432-445.
    • (2010) Cell , vol.141 , pp. 432-445
    • Rahl, P.B.1
  • 64
    • 77952584374 scopus 로고    scopus 로고
    • Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing
    • Schwartz S., Ast G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J. 2010, 29:1629-1636.
    • (2010) EMBO J. , vol.29 , pp. 1629-1636
    • Schwartz, S.1    Ast, G.2
  • 65
    • 33845380816 scopus 로고    scopus 로고
    • A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators
    • Zhu H., et al. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol. Biol. Cell 2006, 17:5105-5114.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 5105-5114
    • Zhu, H.1
  • 66
    • 73449092184 scopus 로고    scopus 로고
    • Discovery and annotation of functional chromatin signatures in the human genome
    • Hon G., et al. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput. Biol. 2009, 5:e1000566.
    • (2009) PLoS Comput. Biol. , vol.5
    • Hon, G.1
  • 67
    • 78649303325 scopus 로고    scopus 로고
    • Splicing-dependent RNA polymerase pausing in yeast
    • Alexander R.D., et al. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell 2010, 40:582-593.
    • (2010) Mol. Cell , vol.40 , pp. 582-593
    • Alexander, R.D.1
  • 68
    • 80052033449 scopus 로고    scopus 로고
    • Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast
    • Wilhelm B.T., et al. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biol. 2011, 12:R82.
    • (2011) Genome Biol. , vol.12
    • Wilhelm, B.T.1
  • 69
    • 77954659099 scopus 로고    scopus 로고
    • Relationship between nucleosome positioning and DNA methylation
    • Chodavarapu R.K., et al. Relationship between nucleosome positioning and DNA methylation. Nature 2010, 466:388-392.
    • (2010) Nature , vol.466 , pp. 388-392
    • Chodavarapu, R.K.1
  • 70
    • 0024328766 scopus 로고
    • Sex in flies: the splice of life
    • Baker B.S. Sex in flies: the splice of life. Nature 1989, 340:521-524.
    • (1989) Nature , vol.340 , pp. 521-524
    • Baker, B.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.