메뉴 건너뛰기




Volumn 7297 LNCS, Issue , 2012, Pages 124-131

Learning from mixture of experimental data: A constraint-based approach

Author keywords

Conditional independence test; Constraint Based learning; Graphical Models; Mixture of Experimental data

Indexed keywords

CONDITIONAL INDEPENDENCES; CONSTRAINT-BASED; EXPERIMENTAL CONDITIONS; EXPERIMENTAL DATA; GRAPHICAL MODEL; NULL HYPOTHESIS; PROOF OF CONCEPT; STATISTICAL ERRORS; STATISTICAL INFERENCE;

EID: 84861685415     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-30448-4_16     Document Type: Conference Paper
Times cited : (5)

References (15)
  • 1
    • 84862301788 scopus 로고    scopus 로고
    • Sufficient condition for pooling data from different distributions
    • Eberhardt, F.: Sufficient condition for pooling data from different distributions. In: ERROR (2006)
    • (2006) ERROR
    • Eberhardt, F.1
  • 2
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. J. Mach. Learn. Res. 11, 171-234 (2010)
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 3
    • 76749122843 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions
    • Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. J. Mach. Learn. Res. 11, 235-284 (2010)
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 4
    • 77955035481 scopus 로고    scopus 로고
    • Structure-based variable selection for survival data
    • Lagani, V., Tsamardinos, I.: Structure-based variable selection for survival data. Bioinformatics 26(15), 1887-1894 (2010)
    • (2010) Bioinformatics , vol.26 , Issue.15 , pp. 1887-1894
    • Lagani, V.1    Tsamardinos, I.2
  • 5
    • 0007047929 scopus 로고    scopus 로고
    • Causal Discovery from a Mixture of Experimental and Observational Data
    • Cooper, G.F., Yoo, C.: Causal Discovery from a Mixture of Experimental and Observational Data. In: UAI (1999)
    • (1999) UAI
    • Cooper, G.F.1    Yoo, C.2
  • 6
    • 33749550611 scopus 로고    scopus 로고
    • Causal discovery from changes
    • Tian, J., Pearl, J.: Causal discovery from changes. In: UAI (2001)
    • (2001) UAI
    • Tian, J.1    Pearl, J.2
  • 8
    • 67649136789 scopus 로고    scopus 로고
    • Exact bayesian structure learning from uncertain interventions
    • Eaton, D., Murphy, K.: Exact bayesian structure learning from uncertain interventions. In: AISTAT (2007)
    • (2007) AISTAT
    • Eaton, D.1    Murphy, K.2
  • 9
    • 0002294347 scopus 로고
    • A Simple Sequentially Rejective Multiple Test Procedure
    • Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6(2), 65-70 (1979)
    • (1979) Scandinavian Journal of Statistics , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 11
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L., Constantin, A.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31-78 (2006)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Constantin, A.3
  • 13
    • 57249084023 scopus 로고    scopus 로고
    • Active Learning of Causal Networks with Intervention Experiments and Optimal Designs
    • He, Y.-B., Geng, Z.: Active Learning of Causal Networks with Intervention Experiments and Optimal Designs. Journal of Machine Learning Research 9, 2523-2547 (2008)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2523-2547
    • He, Y.-B.1    Geng, Z.2
  • 14
    • 80053138092 scopus 로고    scopus 로고
    • Noisy-OR Models with Latent Confounding
    • Hyttinen, A., Hoyer, P.O., Eberhardt, F.: Noisy-OR Models with Latent Confounding. In: UAI (2011)
    • (2011) UAI
    • Hyttinen, A.1    Hoyer, P.O.2    Eberhardt, F.3
  • 15
    • 84874683027 scopus 로고    scopus 로고
    • Learning causal network structure from multiple (in)dependence models
    • Claassen, T., Heskes, T.: Learning causal network structure from multiple (in)dependence models. In: PGM (2010)
    • (2010) PGM
    • Claassen, T.1    Heskes, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.