메뉴 건너뛰기




Volumn 34, Issue 5, 2010, Pages 631-642

A semi-supervised approach to fault diagnosis for chemical processes

Author keywords

BIC; Fault diagnosis; GMM; ICA; SVM; Tennessee Eastman

Indexed keywords

BAYESIAN INFORMATION CRITERION; CHEMICAL PROCESS; DIAGNOSIS PERFORMANCE; FAULT DIAGNOSIS; FAULT DIAGNOSIS SYSTEMS; FEATURE EXTRACTION METHODS; GAUSSIAN MIXTURE MODEL; SEMI-SUPERVISED; TENNESSEE EASTMAN; TENNESSEE EASTMAN PROCESS; UNSUPERVISED CLUSTERING; UNSUPERVISED LEARNING METHOD;

EID: 77950367567     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2009.12.008     Document Type: Article
Times cited : (53)

References (39)
  • 1
    • 41149108971 scopus 로고    scopus 로고
    • Robust unsupervised detection of action potentials with probabilistic methods
    • Benitez R., and Nenadic Z. Robust unsupervised detection of action potentials with probabilistic methods. IEEE Transactions on Biomedical Engineering 55 4 (2008) 1344-1354
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.4 , pp. 1344-1354
    • Benitez, R.1    Nenadic, Z.2
  • 3
    • 65549154885 scopus 로고    scopus 로고
    • Variable-weighted Fisher discriminant analysis for process fault diagnosis
    • Bin He X., Wang W., Pu Yang Y., and Hong Y. Variable-weighted Fisher discriminant analysis for process fault diagnosis. Journal of Process Control 19 6 (2009) 923-931
    • (2009) Journal of Process Control , vol.19 , Issue.6 , pp. 923-931
    • Bin He, X.1    Wang, W.2    Pu Yang, Y.3    Hong, Y.4
  • 5
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O., Schölkopf B., and Zien A. (Eds), The MIT Press
    • In: Chapelle O., Schölkopf B., and Zien A. (Eds). Semi-supervised learning (2006), The MIT Press
    • (2006) Semi-supervised learning
  • 6
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics: Fault detection and identification
    • Chiang L., and Braatz R. Process monitoring using causal map and multivariate statistics: Fault detection and identification. Chemometrics and Intelligent Laboratory Systems 65 (2003) 159-178
    • (2003) Chemometrics and Intelligent Laboratory Systems , vol.65 , pp. 159-178
    • Chiang, L.1    Braatz, R.2
  • 7
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical process using Fisher discriminant analysis, discriminant partial least squares and principal component analysis
    • Chiang L., Russell E., and Braatz R. Fault diagnosis in chemical process using Fisher discriminant analysis, discriminant partial least squares and principal component analysis. Chemometrics and Intelligent Laboratory Systems 50 (2000) 243-252
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.50 , pp. 243-252
    • Chiang, L.1    Russell, E.2    Braatz, R.3
  • 8
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang L., Kotanchek M., and Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers and Chemical Engineering 28 (2004) 1389-1401
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1389-1401
    • Chiang, L.1    Kotanchek, M.2    Kordon, A.3
  • 9
    • 34748873203 scopus 로고    scopus 로고
    • Plant-wide detection and diagnosis using correspondence analysis
    • Detroja K.P., Gudi R.D., and Patwardhan S.C. Plant-wide detection and diagnosis using correspondence analysis. Control Engineering Practice 15 12 (2007) 1468-1483
    • (2007) Control Engineering Practice , vol.15 , Issue.12 , pp. 1468-1483
    • Detroja, K.P.1    Gudi, R.D.2    Patwardhan, S.C.3
  • 10
    • 0027561446 scopus 로고
    • A plant wide industrial process control problem
    • Downs J.J., and Vogel E.F. A plant wide industrial process control problem. Computers and Chemical Engineering 17 3 (1992) 245-255
    • (1992) Computers and Chemical Engineering , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 11
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis
    • Fraley C., and Raftery A.E. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal 41 8 (1998) 578-588
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z., Yang C., and Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science 64 (2009) 2245-2255
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 13
    • 34248585875 scopus 로고    scopus 로고
    • Prediction model building and feature selection with support vector machines in breast cancer diagnosis
    • Huang C.-L., Liao H.-C., and Chen M.-C. Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Systems with Applications 34 (2008) 578-587
    • (2008) Expert Systems with Applications , vol.34 , pp. 578-587
    • Huang, C.-L.1    Liao, H.-C.2    Chen, M.-C.3
  • 14
    • 2942624034 scopus 로고    scopus 로고
    • Artificial neural networks for fault detection in large-scale data acquisition systems
    • Jakubek S.M., and Strasser T.I. Artificial neural networks for fault detection in large-scale data acquisition systems. Engineering Applications of Artificial Intelligence 17 (2004) 233-248
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 233-248
    • Jakubek, S.M.1    Strasser, T.I.2
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B., Burges C., and Smola A. (Eds), MIT Press
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., Burges C., and Smola A. (Eds). Advances in Kernel methods-support vector learning (1999), MIT Press
    • (1999) Advances in Kernel methods-support vector learning
    • Joachims, T.1
  • 17
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • Kano M., Nagao M., Hasebe S., Hashimoto I., Ohno H., Strauss R., et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers and Chemical Engineering 26 (2002) 161-174
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, M.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6
  • 18
  • 19
    • 0010183975 scopus 로고
    • Machine literature searching: VIII. Operational criteria for designing information retrieval systems
    • Kent A., Berry M.M., Luehrs F.U., and Perry J.W. Machine literature searching: VIII. Operational criteria for designing information retrieval systems. American Documentation 6 2 (1955) 93-101
    • (1955) American Documentation , vol.6 , Issue.2 , pp. 93-101
    • Kent, A.1    Berry, M.M.2    Luehrs, F.U.3    Perry, J.W.4
  • 21
    • 25844517176 scopus 로고    scopus 로고
    • Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process
    • Kulkarni A., Jayaraman V.K., and Kulkarni B.D. Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Computers & Chemical Engineering 29 (2005) 2128-2133
    • (2005) Computers & Chemical Engineering , vol.29 , pp. 2128-2133
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 22
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J., Yoo C., and Lee I. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 59 (2004) 2995-3006
    • (2004) Chemical Engineering Science , vol.59 , pp. 2995-3006
    • Lee, J.1    Yoo, C.2    Lee, I.3
  • 23
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J., Qin S.J., and Lee I. Fault detection and diagnosis based on modified independent component analysis. AIChE Journal 52 10 (2006) 3501-3514
    • (2006) AIChE Journal , vol.52 , Issue.10 , pp. 3501-3514
    • Lee, J.1    Qin, S.J.2    Lee, I.3
  • 24
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li R.F., and Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Computers and Chemical Engineering 26 (2002) 467-473
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 25
    • 0034661266 scopus 로고    scopus 로고
    • Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis
    • Lin W., Qian Y., and Li X. Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis. Computers and Chemical Engineering 24 (2000) 423-429
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 423-429
    • Lin, W.1    Qian, Y.2    Li, X.3
  • 27
    • 34250618313 scopus 로고    scopus 로고
    • A novel approach to estimation of E. coli promoter gene sequences: Combining feature selection and least square support vector machine (FS_LSSVM)
    • Polat K., and Günes S. A novel approach to estimation of E. coli promoter gene sequences: Combining feature selection and least square support vector machine (FS_LSSVM). Applied Mathematics and Computation 190 (2007) 1574-1582
    • (2007) Applied Mathematics and Computation , vol.190 , pp. 1574-1582
    • Polat, K.1    Günes, S.2
  • 28
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E., Chiang L., and Braatz R. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.1    Chiang, L.2    Braatz, R.3
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 2 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • Shao J.-D., Rong G., and Lee J. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chemometrics and Intellingent Laboratory Systems 96 (2009) 75-83
    • (2009) Chemometrics and Intellingent Laboratory Systems , vol.96 , pp. 75-83
    • Shao, J.-D.1    Rong, G.2    Lee, J.3
  • 32
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Tamura M., and Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Computers and Chemical Engineering 31 (2007) 1035-1046
    • (2007) Computers and Chemical Engineering , vol.31 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 35
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • Verron S., Tiplica T., and Kobi A. Fault detection and identification with a new feature selection based on mutual information. Journal of Process Control 18 (2008) 479-490
    • (2008) Journal of Process Control , vol.18 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3
  • 36
    • 35948929058 scopus 로고    scopus 로고
    • Simultaneous fault diagnosis in chemical plants using a MultiLabel approach
    • Yélamos I., Graells M., Puigjaner L., and Escudero G. Simultaneous fault diagnosis in chemical plants using a MultiLabel approach. AIChE Journal 53 11 (2007) 2871-2884
    • (2007) AIChE Journal , vol.53 , Issue.11 , pp. 2871-2884
    • Yélamos, I.1    Graells, M.2    Puigjaner, L.3    Escudero, G.4
  • 37
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • Yélamos I., Escudero G., Graells M., and Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Computers and Chemical Engineering 33 (2009) 244-255
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 244-255
    • Yélamos, I.1    Escudero, G.2    Graells, M.3    Puigjaner, L.4
  • 38
    • 34248151330 scopus 로고    scopus 로고
    • Fault diagnosis based on fuzzy support vector machine with parameter tuning and feature selection
    • Yong M., Zheng X., Zheng Y., Youxian S., and Zheng W. Fault diagnosis based on fuzzy support vector machine with parameter tuning and feature selection. Chinese Journal of Chemical Engineering 15 2 (2007) 233-239
    • (2007) Chinese Journal of Chemical Engineering , vol.15 , Issue.2 , pp. 233-239
    • Yong, M.1    Zheng, X.2    Zheng, Y.3    Youxian, S.4    Zheng, W.5
  • 39
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chemical Engineering Science 64 (2009) 801-811
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.