메뉴 건너뛰기




Volumn 223-224, Issue , 2012, Pages 94-103

Particulate matter characterization by gray level co-occurrence matrix based support vector machines

Author keywords

Gray level co occurrence matrix; Image segmentation; Particulate matter; Support vector machines

Indexed keywords

AUTOMATIC SELECTION; GRAY LEVEL CO-OCCURRENCE MATRIX; HISTOGRAM TECHNIQUE; OPTIMAL SEGMENTATION ALGORITHM; PARTICULATE MATTER; SEGMENTATION ALGORITHMS; SPATIAL RELATIONSHIPS; SVM CLASSIFIERS; TEXTURE FEATURES; TRAINING DATA;

EID: 84861457954     PISSN: 03043894     EISSN: 18733336     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2012.04.056     Document Type: Article
Times cited : (46)

References (37)
  • 1
    • 84861454859 scopus 로고    scopus 로고
    • Particulate Matter, [Online document], Available: (accessed 06/22/2011).
    • Particulate Matter, [Online document], Available: (accessed 06/22/2011). http://www.epa.gov/pm/.
  • 2
    • 84855519903 scopus 로고    scopus 로고
    • Particulate characteristics and emission rates during the injection of class B biosolids into an agricultural field
    • (In review)
    • Bhat A., Kumar A. Particulate characteristics and emission rates during the injection of class B biosolids into an agricultural field. Sci. Total Environ. 2012, 414:328-334. (In review).
    • (2012) Sci. Total Environ. , vol.414 , pp. 328-334
    • Bhat, A.1    Kumar, A.2
  • 5
    • 0021504224 scopus 로고
    • Quantitation of polycyclic aromatic hydrocarbons in diesel exhaust particulate matter by high-performance liquid chromatography fractionation and high-resolution gas chromatography
    • Tong H.Y., Karasek F.W. Quantitation of polycyclic aromatic hydrocarbons in diesel exhaust particulate matter by high-performance liquid chromatography fractionation and high-resolution gas chromatography. Anal. Chem. 1984, 56:2129-2134.
    • (1984) Anal. Chem. , vol.56 , pp. 2129-2134
    • Tong, H.Y.1    Karasek, F.W.2
  • 6
    • 79956100962 scopus 로고    scopus 로고
    • Physical characterization of fine particulate matter inside the public transit buses fueled by biodiesel in Toledo, Ohio
    • Shandilya K.K., Kumar A. Physical characterization of fine particulate matter inside the public transit buses fueled by biodiesel in Toledo, Ohio. J. Hazard. Mater. 2011, 190:508-514.
    • (2011) J. Hazard. Mater. , vol.190 , pp. 508-514
    • Shandilya, K.K.1    Kumar, A.2
  • 8
    • 79751536040 scopus 로고    scopus 로고
    • A new approach to simulate characterization of particulate matter employing support vector machines
    • Mogireddy K., Devabhaktuni V., Kumar A., Aggarwal P., Bhattacharya P. A new approach to simulate characterization of particulate matter employing support vector machines. J. Hazard. Mater. 2011, 186:1254-1262.
    • (2011) J. Hazard. Mater. , vol.186 , pp. 1254-1262
    • Mogireddy, K.1    Devabhaktuni, V.2    Kumar, A.3    Aggarwal, P.4    Bhattacharya, P.5
  • 9
    • 0018729995 scopus 로고
    • A survey on image segmentation
    • Fu K.S., Mui J.K. A survey on image segmentation. Pattern Recognit. 1981, 13:3-16.
    • (1981) Pattern Recognit. , vol.13 , pp. 3-16
    • Fu, K.S.1    Mui, J.K.2
  • 10
    • 70350724717 scopus 로고    scopus 로고
    • Image retrieval using both color and texture features
    • Kong F.H. Image retrieval using both color and texture features. Int. Conf. Mach. Learn. Cybern. 2009, 4:2228-2232.
    • (2009) Int. Conf. Mach. Learn. Cybern. , vol.4 , pp. 2228-2232
    • Kong, F.H.1
  • 12
    • 0016939601 scopus 로고
    • A comparative study of texture measures for terrain classification
    • Weszka J.S., Dyer C.R., Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 1976, 6:269-285.
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , pp. 269-285
    • Weszka, J.S.1    Dyer, C.R.2    Rosenfeld, A.3
  • 14
    • 78049480098 scopus 로고    scopus 로고
    • Comparison of three statistical texture measures for lamb grading
    • Chandraratne M.R. Comparison of three statistical texture measures for lamb grading. IEEE Int. Conf. Ind. Inf. Syst. 2007, 513-518.
    • (2007) IEEE Int. Conf. Ind. Inf. Syst. , pp. 513-518
    • Chandraratne, M.R.1
  • 15
    • 79951985205 scopus 로고    scopus 로고
    • GLCM texture feature reduction for EEG spectrogram image using PCA
    • Mustafa M., Taib M.N., Murat Z.H., Lias S. GLCM texture feature reduction for EEG spectrogram image using PCA. IEEE Conf. Res. Dev. 2010, 426-429.
    • (2010) IEEE Conf. Res. Dev. , pp. 426-429
    • Mustafa, M.1    Taib, M.N.2    Murat, Z.H.3    Lias, S.4
  • 17
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998, 2:121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 18
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • Chapelle O., Haffner P., Vapnik V.N. Support vector machines for histogram-based image classification. IEEE Trans. Neural Networks 1999, 10:1055-1064.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 21
    • 0022266928 scopus 로고
    • A new method for gray-level picture thresholding using the entropy of the histogram
    • Kapur J.N., Sahoo P.K., Wong A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision Graphics Image Process. 1985, 29:273-285.
    • (1985) Comput. Vision Graphics Image Process. , vol.29 , pp. 273-285
    • Kapur, J.N.1    Sahoo, P.K.2    Wong, A.K.C.3
  • 22
    • 0035501797 scopus 로고    scopus 로고
    • Unimodal thresholding
    • Rosin P.L. Unimodal thresholding. Pattern Recognit. 2001, 34:2083-2096.
    • (2001) Pattern Recognit. , vol.34 , pp. 2083-2096
    • Rosin, P.L.1
  • 23
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histogram
    • Otsu N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9:62-66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , pp. 62-66
    • Otsu, N.1
  • 26
    • 78049489227 scopus 로고    scopus 로고
    • Image feature extraction techniques and their applications for CBIR and biometrics systems
    • Choras R.S. Image feature extraction techniques and their applications for CBIR and biometrics systems. Int. J. Biol. Biomed. Eng. 2007, 1:6-16.
    • (2007) Int. J. Biol. Biomed. Eng. , vol.1 , pp. 6-16
    • Choras, R.S.1
  • 27
    • 52249098844 scopus 로고    scopus 로고
    • Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network
    • Sharma N., Ray A.K., Sharma S., Shukla K.K., Pradhan S., Aggarwal L.M. Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network. J. Med. Phys. 2008, 33:119-126.
    • (2008) J. Med. Phys. , vol.33 , pp. 119-126
    • Sharma, N.1    Ray, A.K.2    Sharma, S.3    Shukla, K.K.4    Pradhan, S.5    Aggarwal, L.M.6
  • 28
    • 0003112904 scopus 로고    scopus 로고
    • Texture analysis
    • World Scientific Publishing Co. C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.)
    • Tuceryan M., Jain A.K. Texture analysis. The Handbook of Pattern Recognition and Computer Vision 1998, 207-248. World Scientific Publishing Co. 2nd edition. C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.).
    • (1998) The Handbook of Pattern Recognition and Computer Vision , pp. 207-248
    • Tuceryan, M.1    Jain, A.K.2
  • 29
    • 0020974699 scopus 로고
    • Neighboring gray level dependence matrix for texture classification
    • Sun C., Wee W.G. Neighboring gray level dependence matrix for texture classification. Comput. Vision Graphics Image Process. 1983, 23:341-352.
    • (1983) Comput. Vision Graphics Image Process. , vol.23 , pp. 341-352
    • Sun, C.1    Wee, W.G.2
  • 30
    • 84861458295 scopus 로고    scopus 로고
    • Image quality analysis using GLCM, MSc. Thesis, B.S.E.E. University of Pune
    • D. Gadhkari, Image quality analysis using GLCM, MSc. Thesis, B.S.E.E. University of Pune, 2000.
    • (2000)
    • Gadhkari, D.1
  • 32
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 35
    • 84861457129 scopus 로고    scopus 로고
    • Development of an ANN interpolation scheme for estimating missing radon concentrations in Ohio
    • Akkala A., Devabhaktuni V., Kumar A., Bhatt D. Development of an ANN interpolation scheme for estimating missing radon concentrations in Ohio. The Open Environ. Eng. J. 2011, 4:21-31.
    • (2011) The Open Environ. Eng. J. , vol.4 , pp. 21-31
    • Akkala, A.1    Devabhaktuni, V.2    Kumar, A.3    Bhatt, D.4
  • 36
    • 84861461254 scopus 로고    scopus 로고
    • Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis
    • Landgrebe T.C.W., Duin R.P.W. Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis. IEEE Trans. Neural Network 2008, 5:2044-2052.
    • (2008) IEEE Trans. Neural Network , vol.5 , pp. 2044-2052
    • Landgrebe, T.C.W.1    Duin, R.P.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.