-
1
-
-
77949490772
-
Feedback control and optimization for the production of commercial fuels by blending
-
M. Chèbre, Y. Creff, and N. Petit Feedback control and optimization for the production of commercial fuels by blending J Process Control 20 2010 441
-
(2010)
J Process Control
, vol.20
, pp. 441
-
-
Chèbre, M.1
Creff, Y.2
Petit, N.3
-
2
-
-
0033914683
-
Model-based real-time optimization of automotive gasoline blending operations
-
A. Singh, J.F. Forbes, P.J. Vermeer, and S.S. Woo Model-based real-time optimization of automotive gasoline blending operations J Process Control 10 2000 43
-
(2000)
J Process Control
, vol.10
, pp. 43
-
-
Singh, A.1
Forbes, J.F.2
Vermeer, P.J.3
Woo, S.S.4
-
3
-
-
0035874597
-
Process analytical chemisty
-
J. Workman Jr., K.E. Creasy, S. Doherty, L. Bond, M. Koch, A. Ullman, and D.J. Veltkamp Process analytical chemisty Anal Chem 73 2001 2705
-
(2001)
Anal Chem
, vol.73
, pp. 2705
-
-
Workman, Jr.J.1
Creasy, K.E.2
Doherty, S.3
Bond, L.4
Koch, M.5
Ullman, A.6
Veltkamp, D.J.7
-
5
-
-
80051700231
-
Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value and cold filter plugging point from one vibrational spectrum
-
R.M. Balabin, and R.Z. Safieva Near-infrared (NIR) spectroscopy for biodiesel analysis: fractional composition, iodine value and cold filter plugging point from one vibrational spectrum Energy Fuels 25 2011 2373
-
(2011)
Energy Fuels
, vol.25
, pp. 2373
-
-
Balabin, R.M.1
Safieva, R.Z.2
-
6
-
-
79954634261
-
Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data
-
R.M. Balabin, and S.V. Smirnov Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data Anal Chim Acta 692 2011 63
-
(2011)
Anal Chim Acta
, vol.692
, pp. 63
-
-
Balabin, R.M.1
Smirnov, S.V.2
-
7
-
-
27744541302
-
Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach
-
K. Brudzewski, A. Kesik, K. Kolodziejczyk, U. Zborowska, and J. Ulaczyk Gasoline quality prediction using gas chromatography and FTIR spectroscopy: an artificial intelligence approach Fuel 85 2006 553
-
(2006)
Fuel
, vol.85
, pp. 553
-
-
Brudzewski, K.1
Kesik, A.2
Kolodziejczyk, K.3
Zborowska, U.4
Ulaczyk, J.5
-
8
-
-
79953210805
-
Support vector machine regression (SVR/LS-SVM) - An alternative to neural networks (ANNs) for analytical chemistry? comparison of nonlinear methods on near infrared (NIR) spectroscopy data
-
R.M. Balabin, and E.I. Lomakina Support vector machine regression (SVR/LS-SVM) - an alternative to neural networks (ANNs) for analytical chemistry? comparison of nonlinear methods on near infrared (NIR) spectroscopy data Analyst 136 2011 1703
-
(2011)
Analyst
, vol.136
, pp. 1703
-
-
Balabin, R.M.1
Lomakina, E.I.2
-
9
-
-
79952487365
-
Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data
-
R.M. Balabin, and R.Z. Safieva Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data Anal Chim Acta 689 2011 190
-
(2011)
Anal Chim Acta
, vol.689
, pp. 190
-
-
Balabin, R.M.1
Safieva, R.Z.2
-
10
-
-
79952040991
-
Near-infrared (NIR) spectroscopy for motor oil classification: From discriminant analysis to support vector machines
-
R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines Microchem J 98 2011 121
-
(2011)
Microchem J
, vol.98
, pp. 121
-
-
Balabin, R.M.1
Safieva, R.Z.2
Lomakina, E.I.3
-
11
-
-
59349083529
-
Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms
-
F. Si, C.E. Romero, Z. Yao, E. Schuster, Z. Xu, R.L. Morey, and B.N. Liebowitz Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms Fuel 88 2009 806
-
(2009)
Fuel
, vol.88
, pp. 806
-
-
Si, F.1
Romero, C.E.2
Yao, Z.3
Schuster, E.4
Xu, Z.5
Morey, R.L.6
Liebowitz, B.N.7
-
12
-
-
79952535556
-
Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
-
R.M. Balabin, E.I. Lomakina, and R.Z. Safieva Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy Fuel 90 2011 2007
-
(2011)
Fuel
, vol.90
, pp. 2007
-
-
Balabin, R.M.1
Lomakina, E.I.2
Safieva, R.Z.3
-
13
-
-
77953702262
-
Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques
-
R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques Anal Chim Acta 671 2010 27
-
(2010)
Anal Chim Acta
, vol.671
, pp. 27
-
-
Balabin, R.M.1
Safieva, R.Z.2
Lomakina, E.I.3
-
14
-
-
43849106493
-
Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data
-
R.M. Balabin, and R.Z. Safieva Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data Fuel 87 2008 2745
-
(2008)
Fuel
, vol.87
, pp. 2745
-
-
Balabin, R.M.1
Safieva, R.Z.2
-
15
-
-
40249109147
-
Gasoline classification by source and type based on near infrared (NIR) spectroscopy data
-
R.M. Balabin, and R.Z. Safieva Gasoline classification by source and type based on near infrared (NIR) spectroscopy data Fuel 87 2008 1096
-
(2008)
Fuel
, vol.87
, pp. 1096
-
-
Balabin, R.M.1
Safieva, R.Z.2
-
16
-
-
34347204415
-
Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction
-
R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction Chemom Intell Lab Syst 88 2007 183
-
(2007)
Chemom Intell Lab Syst
, vol.88
, pp. 183
-
-
Balabin, R.M.1
Safieva, R.Z.2
Lomakina, E.I.3
-
17
-
-
0032760866
-
Handling intrinsic non-linearity in near-infrared reflectance spectroscopy
-
E. Bertran, M. Blanco, S. Maspoch, M.C. Ortiz, M.S. Sanchez, and L.A. Sarabia Handling intrinsic non-linearity in near-infrared reflectance spectroscopy Chemom Intell Lab Syst 49 1999 215
-
(1999)
Chemom Intell Lab Syst
, vol.49
, pp. 215
-
-
Bertran, E.1
Blanco, M.2
Maspoch, S.3
Ortiz, M.C.4
Sanchez, M.S.5
Sarabia, L.A.6
-
18
-
-
11144325691
-
Partial least squares regression: A tutorial
-
P. Geladi, and B.R. Kowalski Partial least squares regression: a tutorial Anal Chim Acta 185 1986 1
-
(1986)
Anal Chim Acta
, vol.185
, pp. 1
-
-
Geladi, P.1
Kowalski, B.R.2
-
19
-
-
58149203252
-
Support vector machines and its application in chemistry
-
H. Li, Y. Liang, and Q. Xu Support vector machines and its application in chemistry Chemometr Intell Lab Syst 95 2009 188
-
(2009)
Chemometr Intell Lab Syst
, vol.95
, pp. 188
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
20
-
-
4644258808
-
Comparing support vector machines to PLS for spectral regression applications
-
U. Thissen, M. Pepers, B. Ustun, W.J. Melssen, and L.M.C. Buydens Comparing support vector machines to PLS for spectral regression applications Chemom Intel Lab Syst 73 2004 169
-
(2004)
Chemom Intel Lab Syst
, vol.73
, pp. 169
-
-
Thissen, U.1
Pepers, M.2
Ustun, B.3
Melssen, W.J.4
Buydens, L.M.C.5
-
23
-
-
20444505293
-
Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
-
B. Ustun, W.J. Melssen, M. Oudenhuijzen, and L.M.C. Buydens Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization Anal Chim Acta 544 2005 292
-
(2005)
Anal Chim Acta
, vol.544
, pp. 292
-
-
Ustun, B.1
Melssen, W.J.2
Oudenhuijzen, M.3
Buydens, L.M.C.4
-
24
-
-
4043137356
-
A tutorial on support vector regression
-
A.J. Smola, and B. Scholkopf A tutorial on support vector regression Stat Comput 14 2004 199
-
(2004)
Stat Comput
, vol.14
, pp. 199
-
-
Smola, A.J.1
Scholkopf, B.2
-
25
-
-
0346881149
-
Experimentally optimal ν in support vector regression for different noise models and parameter settings
-
A. Chalimourda, B. Scholkopf, and A.J. Smola Experimentally optimal ν in support vector regression for different noise models and parameter settings Neural Netw 17 2004 127
-
(2004)
Neural Netw
, vol.17
, pp. 127
-
-
Chalimourda, A.1
Scholkopf, B.2
Smola, A.J.3
-
30
-
-
42749097121
-
-
Eigenvector research Inc. Wenatchee
-
B.M. Wise, N.B. Gallagher, R. Bro, J.M. Shaver, W. Windig, and R.S. Koch PLS toolbox version 4.0 for use with Matlab 2006 Eigenvector research Inc. Wenatchee
-
(2006)
PLS Toolbox Version 4.0 for Use with Matlab
-
-
Wise, B.M.1
Gallagher, N.B.2
Bro, R.3
Shaver, J.M.4
Windig, W.5
Koch, R.S.6
|