메뉴 건너뛰기




Volumn 97, Issue , 2012, Pages 710-717

Determination of diesel quality parameters using support vector regression and near infrared spectroscopy for an in-line blending optimizer system

Author keywords

Diesel; In line blending; Near infrared spectroscopy; Support vector regression

Indexed keywords

BASELINE CORRECTION; BEST MODEL; DIESEL; DIESEL OIL; DIESEL QUALITY; FLASH POINTS; IN-LINE; OPTIMIZERS; PARAMETRIC OPTIMIZATION; QUALITY PARAMETERS; RBF KERNELS; REFERENCE METHOD; REGRESSION MODEL; REGRESSION PROBLEM; SUPPORT VECTOR REGRESSION (SVR);

EID: 84861183082     PISSN: 00162361     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fuel.2012.03.016     Document Type: Article
Times cited : (69)

References (32)
  • 1
    • 77949490772 scopus 로고    scopus 로고
    • Feedback control and optimization for the production of commercial fuels by blending
    • M. Chèbre, Y. Creff, and N. Petit Feedback control and optimization for the production of commercial fuels by blending J Process Control 20 2010 441
    • (2010) J Process Control , vol.20 , pp. 441
    • Chèbre, M.1    Creff, Y.2    Petit, N.3
  • 2
    • 0033914683 scopus 로고    scopus 로고
    • Model-based real-time optimization of automotive gasoline blending operations
    • A. Singh, J.F. Forbes, P.J. Vermeer, and S.S. Woo Model-based real-time optimization of automotive gasoline blending operations J Process Control 10 2000 43
    • (2000) J Process Control , vol.10 , pp. 43
    • Singh, A.1    Forbes, J.F.2    Vermeer, P.J.3    Woo, S.S.4
  • 5
    • 80051700231 scopus 로고    scopus 로고
    • Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value and cold filter plugging point from one vibrational spectrum
    • R.M. Balabin, and R.Z. Safieva Near-infrared (NIR) spectroscopy for biodiesel analysis: fractional composition, iodine value and cold filter plugging point from one vibrational spectrum Energy Fuels 25 2011 2373
    • (2011) Energy Fuels , vol.25 , pp. 2373
    • Balabin, R.M.1    Safieva, R.Z.2
  • 6
    • 79954634261 scopus 로고    scopus 로고
    • Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data
    • R.M. Balabin, and S.V. Smirnov Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data Anal Chim Acta 692 2011 63
    • (2011) Anal Chim Acta , vol.692 , pp. 63
    • Balabin, R.M.1    Smirnov, S.V.2
  • 7
    • 27744541302 scopus 로고    scopus 로고
    • Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach
    • K. Brudzewski, A. Kesik, K. Kolodziejczyk, U. Zborowska, and J. Ulaczyk Gasoline quality prediction using gas chromatography and FTIR spectroscopy: an artificial intelligence approach Fuel 85 2006 553
    • (2006) Fuel , vol.85 , pp. 553
    • Brudzewski, K.1    Kesik, A.2    Kolodziejczyk, K.3    Zborowska, U.4    Ulaczyk, J.5
  • 8
    • 79953210805 scopus 로고    scopus 로고
    • Support vector machine regression (SVR/LS-SVM) - An alternative to neural networks (ANNs) for analytical chemistry? comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    • R.M. Balabin, and E.I. Lomakina Support vector machine regression (SVR/LS-SVM) - an alternative to neural networks (ANNs) for analytical chemistry? comparison of nonlinear methods on near infrared (NIR) spectroscopy data Analyst 136 2011 1703
    • (2011) Analyst , vol.136 , pp. 1703
    • Balabin, R.M.1    Lomakina, E.I.2
  • 9
    • 79952487365 scopus 로고    scopus 로고
    • Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data
    • R.M. Balabin, and R.Z. Safieva Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data Anal Chim Acta 689 2011 190
    • (2011) Anal Chim Acta , vol.689 , pp. 190
    • Balabin, R.M.1    Safieva, R.Z.2
  • 10
    • 79952040991 scopus 로고    scopus 로고
    • Near-infrared (NIR) spectroscopy for motor oil classification: From discriminant analysis to support vector machines
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines Microchem J 98 2011 121
    • (2011) Microchem J , vol.98 , pp. 121
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 11
    • 59349083529 scopus 로고    scopus 로고
    • Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms
    • F. Si, C.E. Romero, Z. Yao, E. Schuster, Z. Xu, R.L. Morey, and B.N. Liebowitz Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms Fuel 88 2009 806
    • (2009) Fuel , vol.88 , pp. 806
    • Si, F.1    Romero, C.E.2    Yao, Z.3    Schuster, E.4    Xu, Z.5    Morey, R.L.6    Liebowitz, B.N.7
  • 12
    • 79952535556 scopus 로고    scopus 로고
    • Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
    • R.M. Balabin, E.I. Lomakina, and R.Z. Safieva Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy Fuel 90 2011 2007
    • (2011) Fuel , vol.90 , pp. 2007
    • Balabin, R.M.1    Lomakina, E.I.2    Safieva, R.Z.3
  • 13
    • 77953702262 scopus 로고    scopus 로고
    • Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques Anal Chim Acta 671 2010 27
    • (2010) Anal Chim Acta , vol.671 , pp. 27
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 14
    • 43849106493 scopus 로고    scopus 로고
    • Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data
    • R.M. Balabin, and R.Z. Safieva Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data Fuel 87 2008 2745
    • (2008) Fuel , vol.87 , pp. 2745
    • Balabin, R.M.1    Safieva, R.Z.2
  • 15
    • 40249109147 scopus 로고    scopus 로고
    • Gasoline classification by source and type based on near infrared (NIR) spectroscopy data
    • R.M. Balabin, and R.Z. Safieva Gasoline classification by source and type based on near infrared (NIR) spectroscopy data Fuel 87 2008 1096
    • (2008) Fuel , vol.87 , pp. 1096
    • Balabin, R.M.1    Safieva, R.Z.2
  • 16
    • 34347204415 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction Chemom Intell Lab Syst 88 2007 183
    • (2007) Chemom Intell Lab Syst , vol.88 , pp. 183
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 18
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • P. Geladi, and B.R. Kowalski Partial least squares regression: a tutorial Anal Chim Acta 185 1986 1
    • (1986) Anal Chim Acta , vol.185 , pp. 1
    • Geladi, P.1    Kowalski, B.R.2
  • 19
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its application in chemistry
    • H. Li, Y. Liang, and Q. Xu Support vector machines and its application in chemistry Chemometr Intell Lab Syst 95 2009 188
    • (2009) Chemometr Intell Lab Syst , vol.95 , pp. 188
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 23
    • 20444505293 scopus 로고    scopus 로고
    • Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
    • B. Ustun, W.J. Melssen, M. Oudenhuijzen, and L.M.C. Buydens Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization Anal Chim Acta 544 2005 292
    • (2005) Anal Chim Acta , vol.544 , pp. 292
    • Ustun, B.1    Melssen, W.J.2    Oudenhuijzen, M.3    Buydens, L.M.C.4
  • 24
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Scholkopf A tutorial on support vector regression Stat Comput 14 2004 199
    • (2004) Stat Comput , vol.14 , pp. 199
    • Smola, A.J.1    Scholkopf, B.2
  • 25
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal ν in support vector regression for different noise models and parameter settings
    • A. Chalimourda, B. Scholkopf, and A.J. Smola Experimentally optimal ν in support vector regression for different noise models and parameter settings Neural Netw 17 2004 127
    • (2004) Neural Netw , vol.17 , pp. 127
    • Chalimourda, A.1    Scholkopf, B.2    Smola, A.J.3
  • 28
    • 0031958881 scopus 로고    scopus 로고
    • Evolutionary optimisation: A tutorial
    • R. Wehrens, and L.M.C. Buydens Evolutionary optimisation: a tutorial Trends Anal Chem 17 1998 193
    • (1998) Trends Anal Chem , vol.17 , pp. 193
    • Wehrens, R.1    Buydens, L.M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.