메뉴 건너뛰기




Volumn 27, Issue 2, 2011, Pages 275-286

An adaptive neuro-fuzzy inference system (ANFIS) model for thermophysical properties of new refrigerant

Author keywords

ANFIS; R417A; Refrigerant; Thermophysical properties

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS; COEFFICIENT OF VARIATION; DEVELOPED MODEL; DYNAMIC VISCOSITIES; HEAT CONDUCTION COEFFICIENT; INPUT FEATURES; LIMITED DATA; MODEL VALIDATION; NEW REFRIGERANTS; PRESSURE VALUES; R417A; REFRIGERATION SYSTEM; THERMODYNAMIC SIMULATIONS;

EID: 84861126459     PISSN: 1308772X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (15)

References (34)
  • 1
    • 0031656274 scopus 로고    scopus 로고
    • An experimental study on HC290 and a commercial liquefied gas (LPG) mix as suitable replacements for HCFC22
    • Purkayastha B, Bansal PK. An experimental study on HC290 and a commercial liquefied gas (LPG) mix as suitable replacements for HCFC22. Int J Refrig 1998;21:3-17.
    • (1998) Int J Refrig , vol.21 , pp. 3-17
    • Purkayastha, B.1    Bansal, P.K.2
  • 2
    • 67349130500 scopus 로고    scopus 로고
    • Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method
    • Comakli K, Simsek F, Comakli O, Sahin B. Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method. Applied Energy 2009;86:2451-2458.
    • (2009) Applied Energy , vol.86 , pp. 2451-2458
    • Comakli, K.1    Simsek, F.2    Comakli, O.3    Sahin, B.4
  • 4
    • 17744391284 scopus 로고    scopus 로고
    • A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples
    • Sencan A, Kalogirou SA. A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples. Energy Convers Manage 2005;46:2405-18.
    • (2005) Energy Convers Manage , vol.46 , pp. 2405-2418
    • Sencan, A.1    Kalogirou, S.A.2
  • 5
    • 24644470151 scopus 로고    scopus 로고
    • Thermodynamic analysis of absorption systems using artificial neural network
    • Sencan A, Yakut AK, Kalogirou SA. Thermodynamic analysis of absorption systems using artificial neural network. Renew Energy 2006;31:29-43.
    • (2006) Renew Energy , vol.31 , pp. 29-43
    • Sencan, A.1    Yakut, A.K.2    Kalogirou, S.A.3
  • 6
    • 33748291453 scopus 로고    scopus 로고
    • Performance of ammonia-water refrigeration systems using artificial neural Networks
    • Sencan A. Performance of ammonia-water refrigeration systems using artificial neural Networks. Renew Energy 2007;32:314-328.
    • (2007) Renew Energy , vol.32 , pp. 314-328
    • Sencan, A.1
  • 7
    • 57049111060 scopus 로고    scopus 로고
    • Alternative approach in thermal analysis of plate heat exchanger
    • Selbas R, Sencan A, Kilic B. Alternative approach in thermal analysis of plate heat exchanger. Heat Mass Transfer 2009;45:323-329.
    • (2009) Heat Mass Transfer , vol.45 , pp. 323-329
    • Selbas, R.1    Sencan, A.2    Kilic, B.3
  • 8
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance of a thermosyphon solar water-heater
    • Kalogirou SA, Panteliou S, Dentsoras A. Artificial neural networks used for the performance of a thermosyphon solar water-heater. Renew Energy 1999;18:87-99.
    • (1999) Renew Energy , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 9
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive-solar building
    • Kalogirou SA, Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive-solar building. Energy 2000;25:479-491.
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 10
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks application to refrigerants
    • Chouai A, Laugier S, Richon D. Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equil 2002;199:53-62.
    • (2002) Fluid Phase Equil , vol.199 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 11
    • 67349145473 scopus 로고    scopus 로고
    • An expert system for the humidity and temperature control in HVAC system using ANFIS and optimization with fuzzy modeling approach
    • Soyguder S, Alli H. An expert system for the humidity and temperature control in HVAC system using ANFIS and optimization with fuzzy modeling approach. Energy Build 2009;41:815-822.
    • (2009) Energy Build , vol.41 , pp. 815-822
    • Soyguder, S.1    Alli, H.2
  • 12
    • 67349145542 scopus 로고    scopus 로고
    • A neuro-fuzzy model for prediction of the indoor temperature in typical Australian residential buildings
    • Alasha'ary H, Moghtaderi B, Page A. Sugo H. A neuro-fuzzy model for prediction of the indoor temperature in typical Australian residential buildings, Energy Build 2009;41:703-710.
    • (2009) Energy Build , vol.41 , pp. 703-710
    • Alasha'ary, H.1    Moghtaderi, B.2    Page, A.3    Sugo, H.4
  • 13
    • 56349117682 scopus 로고    scopus 로고
    • Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water
    • Das MK, Kishor N, Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water. Expert Syst Appl 2009;36:1142-1154.
    • (2009) Expert Syst Appl , vol.36 , pp. 1142-1154
    • Das, M.K.1    Kishor, N.2
  • 15
    • 61749095807 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
    • Jassar S, Liao Z, Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems, Build Environ 2009;44:1609-1616.
    • (2009) Build Environ , vol.44 , pp. 1609-1616
    • Jassar, S.1    Liao, Z.2    Zhao, L.3
  • 16
    • 57949098440 scopus 로고    scopus 로고
    • Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique
    • Ozger M, Yildirim G. Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique. Adv Eng Software 2009;40:281-287.
    • (2009) Adv Eng Software , vol.40 , pp. 281-287
    • Ozger, M.1    Yildirim, G.2
  • 17
    • 41249099840 scopus 로고    scopus 로고
    • Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system
    • Mellit A, Kalogirou SA, Shaari S, Salhi H, Hadj Arab A. Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system. Renew Energy 2008;33:1570-1590.
    • (2008) Renew Energy , vol.33 , pp. 1570-1590
    • Mellit, A.1    Kalogirou, S.A.2    Shaari, S.3    Salhi, H.4    Hadj, A.A.5
  • 18
    • 41849109878 scopus 로고    scopus 로고
    • Modeling a ground-coupled heat pump system by a support vector machine
    • Esen H, Inalli M, Sengur A, Esen M. Modeling a ground-coupled heat pump system by a support vector machine, Renew Energy 2008;33:1814-1823.
    • (2008) Renew Energy , vol.33 , pp. 1814-1823
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 19
    • 36749065047 scopus 로고    scopus 로고
    • Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems
    • Esen H, Inalli M, Sengur A, Esen M. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems, Int J Refrig 2008;31:65-74.
    • (2008) Int J Refrig , vol.31 , pp. 65-74
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 20
    • 40949144519 scopus 로고    scopus 로고
    • Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems
    • Chaabenea M, Ammar MB. Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems, Renew Energy 2008;33:1435-1443.
    • (2008) Renew Energy , vol.33 , pp. 1435-1443
    • Chaabenea, M.1    Ammar, M.B.2
  • 21
    • 60249099642 scopus 로고    scopus 로고
    • Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system
    • Soyguder S, Alli H. Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system. Expert Syst Appl 2009;36:8631-8638.
    • (2009) Expert Syst Appl , vol.36 , pp. 8631-8638
    • Soyguder, S.1    Alli, H.2
  • 22
    • 49149096916 scopus 로고    scopus 로고
    • Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS
    • Esen H, Inalli M, Sengur A, Esen M. Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS, Build Environ 2008;43:2178-2187.
    • (2008) Build Environ , vol.43 , pp. 2178-2187
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 23
    • 34447548782 scopus 로고    scopus 로고
    • Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN)
    • Varol Y, Avci E, Koca A, Oztop HF. Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Int Commun Heat Mass Transfer 2007;34:887-896.
    • (2007) Int Commun Heat Mass Transfer , vol.34 , pp. 887-896
    • Varol, Y.1    Avci, E.2    Koca, A.3    Oztop, H.F.4
  • 24
    • 58349092718 scopus 로고    scopus 로고
    • A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis
    • Efendigil T, Onut S, Kahraman C. A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Syst Appl 2009;36:6697-6707.
    • (2009) Expert Syst Appl , vol.36 , pp. 6697-6707
    • Efendigil, T.1    Onut, S.2    Kahraman, C.3
  • 25
    • 82355173999 scopus 로고    scopus 로고
    • Energetic and exergetic approach to vapor compression refrigeration cycle with two-stage and intercooler for new refrigerants
    • Dikmen E, Sencan A, Selbas R. Energetic and exergetic approach to vapor compression refrigeration cycle with two-stage and intercooler for new refrigerants. Energy Educ Sci Technol Part A 2011;26:205-219.
    • (2011) Energy Educ Sci Technol Part A , vol.26 , pp. 205-219
    • Dikmen, E.1    Sencan, A.2    Selbas, R.3
  • 26
    • 67650273583 scopus 로고    scopus 로고
    • Currency of district cooling systems and alternative energy sources
    • Ulusarslan D, Gemici Z, Teke I. Currency of district cooling systems and alternative energy sources. Energy Educ Sci Technol Part A 2009;23:31-53.
    • (2009) Energy Educ Sci Technol Part A , vol.23 , pp. 31-53
    • Ulusarslan, D.1    Gemici, Z.2    Teke, I.3
  • 27
    • 84861923066 scopus 로고    scopus 로고
    • Experimental investigation of the effect of absorber pre-cooler to the performance of the absorption cooling system
    • Gungor C, Kaya D. Experimental investigation of the effect of absorber pre-cooler to the performance of the absorption cooling system. Energy Educ Sci Technol Part A 2009;24:71-83.
    • (2009) Energy Educ Sci Technol Part A , vol.24 , pp. 71-83
    • Gungor, C.1    Kaya, D.2
  • 28
    • 77957298192 scopus 로고    scopus 로고
    • Experimental investigation of capacitor effects on performance parameters planning for household refrigerator and energy systems
    • Cerci Y. Experimental investigation of capacitor effects on performance parameters planning for household refrigerator and energy systems. Energy Educ Sci Technol Part A 2009;24:15-24.
    • (2009) Energy Educ Sci Technol Part A , vol.24 , pp. 15-24
    • Cerci, Y.1
  • 29
    • 77957321190 scopus 로고    scopus 로고
    • Performance evaluation of a 250 L household refrigerator
    • Cerci Y, Ekin AB. Performance evaluation of a 250 L household refrigerator. Energy Educ Sci Technol Part A 2010;26:25-36.
    • (2010) Energy Educ Sci Technol Part A , vol.26 , pp. 25-36
    • Cerci, Y.1    Ekin, A.B.2
  • 30
    • 84861138604 scopus 로고    scopus 로고
    • The performance of a cool storage system in various operation conditions and its economic analysis
    • Basaran T, Sumbul N. The performance of a cool storage system in various operation conditions and its economic analysis. Energy Educ Sci Technol Part A 2011;26:251-264.
    • (2011) Energy Educ Sci Technol Part A , vol.26 , pp. 251-264
    • Basaran, T.1    Sumbul, N.2
  • 31
    • 84861174943 scopus 로고    scopus 로고
    • Performance evaluation of variable speed refrigeration system with artificial neural networks
    • Kizilkan O. Performance evaluation of variable speed refrigeration system with artificial neural networks. Energy Educ Sci Technol Part A 2011;26:239-250.
    • (2011) Energy Educ Sci Technol Part A , vol.26 , pp. 239-250
    • Kizilkan, O.1
  • 32
    • 33845343603 scopus 로고    scopus 로고
    • Progress and recent trends in biofuels
    • Demirbas A. Progress and recent trends in biofuels. Prog Energy Combus Sci 2007;33:1-18.
    • (2007) Prog Energy Combus Sci , vol.33 , pp. 1-18
    • Demirbas, A.1
  • 33
    • 81155123577 scopus 로고    scopus 로고
    • Social, economic, environmental and policy aspects of biofuels
    • Demirbas A. Social, economic, environmental and policy aspects of biofuels. Energy Educ Sci Technol Part B 2010;2:75-109.
    • (2010) Energy Educ Sci Technol Part B , vol.2 , pp. 75-109
    • Demirbas, A.1
  • 34
    • 84861959429 scopus 로고    scopus 로고
    • Environmental impacts of biofuels
    • Sahin Y. Environmental impacts of biofuels. Energy Educ Sci Technol Part A 2011;26:129-142.
    • (2011) Energy Educ Sci Technol Part A , vol.26 , pp. 129-142
    • Sahin, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.