메뉴 건너뛰기




Volumn 31, Issue 1, 2006, Pages 29-43

Thermodynamic analysis of absorption systems using artificial neural network

Author keywords

Absorption heat pump; Artificial neural network; Lithium bromide water; Lithium chloride water; Thermodynamic properties

Indexed keywords

DATA ACQUISITION; DIFFERENTIAL EQUATIONS; ENTHALPY; HEAT PUMP SYSTEMS; LITHIUM COMPOUNDS; MATHEMATICAL MODELS; NEURAL NETWORKS; SPREADSHEETS; THERMOANALYSIS; THERMODYNAMIC PROPERTIES; THERMODYNAMICS;

EID: 24644470151     PISSN: 09601481     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.renene.2005.03.011     Document Type: Article
Times cited : (51)

References (20)
  • 1
    • 0034325534 scopus 로고    scopus 로고
    • A general thermodynamic framework for understanding the behaviour of absorption chillers
    • H.T. Chua, H.K. Toh, A. Malek, K.C. Ng, and K. Sirinivasan A general thermodynamic framework for understanding the behaviour of absorption chillers Int J Refrigeration 23 2000 491 507
    • (2000) Int J Refrigeration , vol.23 , pp. 491-507
    • Chua, H.T.1    Toh, H.K.2    Malek, A.3    Ng, K.C.4    Sirinivasan, K.5
  • 3
    • 0031096299 scopus 로고    scopus 로고
    • Fundamental thermodynamics of ideal absorption cycles
    • R.M. Tozer, and R.W. James Fundamental thermodynamics of ideal absorption cycles Int J Refrigeration 20 2 1997 120 135
    • (1997) Int J Refrigeration , vol.20 , Issue.2 , pp. 120-135
    • Tozer, R.M.1    James, R.W.2
  • 4
    • 0031103196 scopus 로고    scopus 로고
    • Thermodynamic design data and optimum design maps for absorption refrigeration systems
    • D.W. Sun Thermodynamic design data and optimum design maps for absorption refrigeration systems Appl Therm Eng 17 3 1997 211 221
    • (1997) Appl Therm Eng , vol.17 , Issue.3 , pp. 211-221
    • Sun, D.W.1
  • 6
    • 0141707131 scopus 로고    scopus 로고
    • Thermodynamic properties of aqueous solutions of lithium chloride
    • S.K. Chaudhari, and K.R. Patil Thermodynamic properties of aqueous solutions of lithium chloride Phys Chem Liq 40 3 2002 317 325
    • (2002) Phys Chem Liq , vol.40 , Issue.3 , pp. 317-325
    • Chaudhari, S.K.1    Patil, K.R.2
  • 7
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy systems: A review
    • S.A. Kalogirou Applications of artificial neural networks in energy systems: a review Energy Convers Manage 40 1999 1073 1087
    • (1999) Energy Convers Manage , vol.40 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 8
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • S.A. Kalogirou Artificial neural networks in renewable energy systems applications: a review Renew Sustain Energy Rev 5 2000 373 401
    • (2000) Renew Sustain Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 9
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • S.A. Kalogirou Applications of artificial neural networks for energy systems Appl Energy 67 2000 17 35
    • (2000) Appl Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 10
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks
    • S.A. Kalogirou Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks Appl Energy 66 2000 63 74
    • (2000) Appl Energy , vol.66 , pp. 63-74
    • Kalogirou, S.A.1
  • 11
    • 0346398332 scopus 로고    scopus 로고
    • Optimization of solar systems using neural-networks and genetic algorithms
    • S.A. Kalogirou Optimization of solar systems using neural-networks and genetic algorithms Appl Energy 77 4 2004 383 405
    • (2004) Appl Energy , vol.77 , Issue.4 , pp. 383-405
    • Kalogirou, S.A.1
  • 12
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance of a thermosyphon solar water-heater
    • S.A. Kalogirou, S. Panteliou, and A. Dentsoras Artificial neural networks used for the performance of a thermosyphon solar water-heater Renew Energy 18 1999 87 99
    • (1999) Renew Energy , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 13
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive-solar building
    • S.A. Kalogirou, and M. Bojic Artificial neural networks for the prediction of the energy consumption of a passive-solar building Energy 25 2000 479 491
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 14
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks application to refrigerants
    • A. Chouai, S. Laugier, and D. Richon Modeling of thermodynamic properties using neural networks application to refrigerants Fluid Phase Equilib 199 2002 53 62
    • (2002) Fluid Phase Equilib , vol.199 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 15
    • 0036027846 scopus 로고    scopus 로고
    • Global optimization of absorption chiller system by genetic algorithm and neural network
    • T.T. Chow, G.Q. Zhang, Z. Lin, and C.L. Song Global optimization of absorption chiller system by genetic algorithm and neural network Energy Buildings 34 2002 103 109
    • (2002) Energy Buildings , vol.34 , pp. 103-109
    • Chow, T.T.1    Zhang, G.Q.2    Lin, Z.3    Song, C.L.4
  • 16
    • 0035129451 scopus 로고    scopus 로고
    • Neural-network analysis of fin-tube refrigerating heat exchanger with limited experimental data
    • A. Pacheco-Vega, M. Sen, K.T. Yang, and R.L. McClain Neural-network analysis of fin-tube refrigerating heat exchanger with limited experimental data Int J Heat Mass Transfer 44 2001 763 770
    • (2001) Int J Heat Mass Transfer , vol.44 , pp. 763-770
    • Pacheco-Vega, A.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.