메뉴 건너뛰기




Volumn 46, Issue 15-16, 2005, Pages 2405-2418

A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples

Author keywords

Artificial neural network; Lithium bromide; Lithium chloride; Lithium iodide; Lithium nitrate; Vapor pressure

Indexed keywords

ABSORPTION; MATHEMATICAL MODELS; NEURAL NETWORKS; OZONE; REFRIGERANTS; REGRESSION ANALYSIS; VAPOR PRESSURE;

EID: 17744391284     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2004.11.007     Document Type: Article
Times cited : (72)

References (17)
  • 1
    • 0141707131 scopus 로고    scopus 로고
    • Thermodynamic properties of aqueous solutions of lithium chloride
    • S.K. Chaudhari, and K.R. Patil Thermodynamic properties of aqueous solutions of lithium chloride Phys Chem Liq 40 3 2002 317 325
    • (2002) Phys Chem Liq , vol.40 , Issue.3 , pp. 317-325
    • Chaudhari, S.K.1    Patil, K.R.2
  • 2
    • 0033098087 scopus 로고    scopus 로고
    • Solubilities, vapor pressures and heat capacities of the water + lithium bromide + lithium nitrate + lithium iodide + lithium chloride system
    • K.K. Koo, H.R. Lee, S. Jeong, Y.S. Oh, and D.R. Park Solubilities, vapor pressures and heat capacities of the water + lithium bromide + lithium nitrate + lithium iodide + lithium chloride system Int J Thermophys 20 2 1999 589 600
    • (1999) Int J Thermophys , vol.20 , Issue.2 , pp. 589-600
    • Koo, K.K.1    Lee, H.R.2    Jeong, S.3    Oh, Y.S.4    Park, D.R.5
  • 3
    • 0033890581 scopus 로고    scopus 로고
    • Thermodynamic design data and performance evaluation of the water + lithium bromide + lithium iodide + lithium nitrate + lithium chloride system for absorption chiller
    • H.R. Lee, K.K. Koo, J.S. Jeong Kim, H.S. Lee, Y.S. Oh, and D.R. Park Thermodynamic design data and performance evaluation of the water + lithium bromide + lithium iodide + lithium nitrate + lithium chloride system for absorption chiller Appl Therm Eng 17 2000 707 720
    • (2000) Appl Therm Eng , vol.17 , pp. 707-720
    • Lee, H.R.1    Koo, K.K.2    Jeong Kim, J.S.3    Lee, H.S.4    Oh, Y.S.5    Park, D.R.6
  • 4
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy systems: A review
    • S.A. Kalogirou Applications of artificial neural networks in energy systems: a review Energy Convers Manage 40 1999 1073 1087
    • (1999) Energy Convers Manage , vol.40 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 5
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • S.A. Kalogirou Artificial neural networks in renewable energy systems applications: a review Renew Sust Energy Rev 5 2000 373 401
    • (2000) Renew Sust Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 6
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • S.A. Kalogirou Applications of artificial neural networks for energy systems Appl Energy 67 2000 17 35
    • (2000) Appl Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 7
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks
    • S.A. Kalogirou Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks Appl Energy 66 2000 63 74
    • (2000) Appl Energy , vol.66 , pp. 63-74
    • Kalogirou, S.A.1
  • 8
    • 0346398332 scopus 로고    scopus 로고
    • Optimization of solar systems using neural-networks and genetic algorithms
    • S.A. Kalogirou Optimization of solar systems using neural-networks and genetic algorithms Appl Energy 77 4 2004 383 405
    • (2004) Appl Energy , vol.77 , Issue.4 , pp. 383-405
    • Kalogirou, S.A.1
  • 9
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance of a thermosyphon solar water-heater
    • S.A. Kalogirou, S. Panteliou, and A. Dentsoras Artificial neural networks used for the performance of a thermosyphon solar water-heater Renew Energy 18 1999 87 99
    • (1999) Renew Energy , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 10
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive-solar building
    • S.A. Kalogirou, and M. Bojic Artificial neural networks for the prediction of the energy consumption of a passive-solar building Energy 25 2000 479 491
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 11
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks application to refrigerants
    • A. Chouai, S. Laugier, and D. Richon Modeling of thermodynamic properties using neural networks application to refrigerants Fluid Phase Equilib 199 2002 53 62
    • (2002) Fluid Phase Equilib , vol.199 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 12
    • 0035129451 scopus 로고    scopus 로고
    • Neural-network analysis of fin-tube refrigerating heat exchanger with limited experimental data
    • A. Pacheco-Vega, M. Sen, K.T. Yang, and R.L. McClain Neural-network analysis of fin-tube refrigerating heat exchanger with limited experimental data Int J Heat Mass Transfer 44 2001 763 770
    • (2001) Int J Heat Mass Transfer , vol.44 , pp. 763-770
    • Pacheco-Vega, A.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4
  • 13
    • 0035372175 scopus 로고    scopus 로고
    • New approach to dynamic modeling of vapor-compression liquid chillers: Artificial neural networks
    • H. Bechtler, M.W. Browne, P.K. Bansal, and V. Kecman New approach to dynamic modeling of vapor-compression liquid chillers: artificial neural networks Appl Therm Eng 21 2001 941 953
    • (2001) Appl Therm Eng , vol.21 , pp. 941-953
    • Bechtler, H.1    Browne, M.W.2    Bansal, P.K.3    Kecman, V.4
  • 14
    • 4644251158 scopus 로고    scopus 로고
    • Back calculation of pavement layer parameters using artificial neural networks
    • M. Saltan, and S. Terzi Back calculation of pavement layer parameters using artificial neural networks Indian J Eng and Mater Sci 11 2004 38 42
    • (2004) Indian J Eng and Mater Sci , vol.11 , pp. 38-42
    • Saltan, M.1    Terzi, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.