Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses
PMID:21487095
Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, et al. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 2011; 23:1556-72; PMID:21487095; http://dx.doi.org/10.1105/tpc.111. 084095
Advances in the prediction of protein targeting signals
PMID:15174127
Schneider G, Fechner U. Advances in the prediction of protein targeting signals. Proteomics 2004; 4:1571-80; PMID:15174127; http://dx.doi.org/10.1002/pmic. 200300786
Prediction of dual protein targeting to plant organelles
PMID:19368670
Mitschke J, Fuss J, Blum T, Höglund A, Reski R, Kohlbacher O, et al. Prediction of dual protein targeting to plant organelles. New Phytol 2009; 183:224-35; PMID:19368670; http://dx.doi.org/10.1111/j.1469-8137.2009.02832.x
In silico prediction of the peroxisomal proteome in fungi, plants and animals
PMID:12823981
Emanuelsson O, Elofsson A, von Heijne G, Cristóbal S. In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 2003; 330:443-56; PMID:12823981; http://dx.doi.org/10.1016/ S0022-2836(03)00553-9
Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences
PMID: 12706717
Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 2003; 328:567-79; PMID: 12706717; http://dx.doi.org/10.1016/S0022-2836(03)00318-8
Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses
PMID:15208424
Reumann S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 2004; 135: 783-800; PMID:15208424; http://dx.doi.org/10.1104/pp.103.035584
Prediction of subcellular localization using sequence-biased recurrent networks
PMID:15746276
Bodén M, Hawkins J. Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 2005; 21:2279-86; PMID:15746276; http://dx.doi.org/10.1093/bioinformatics/bti372