메뉴 건너뛰기




Volumn 20, Issue 3, 2004, Pages 231-238

A neural network based model for prognosis of early breast cancer

Author keywords

Backpropagation algorithm; Bayes error; Breast cancer; Medical prognosis; Multi layer feed forward neural networks

Indexed keywords

BACKPROPAGATION; DATABASE SYSTEMS; DECISION MAKING; GENETIC ALGORITHMS; MATHEMATICAL MODELS; PATHOLOGY; PATIENT MONITORING; PROBABILITY; REGRESSION ANALYSIS; TUMORS;

EID: 3543079195     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:APIN.0000021415.88365.c4     Document Type: Article
Times cited : (16)

References (20)
  • 1
    • 0025279110 scopus 로고
    • How to use prognostic factors in axillary node-negative breast cancer patients
    • W.L. McGuire, A.T. Tandom, D.C. Allred, G.C. Chamnes, and G.M. Clark, "How to use prognostic factors in axillary node-negative breast cancer patients," J. Natl. Cancer Inst., vol. 82, pp. 1006-1015, 1990.
    • (1990) J. Natl. Cancer Inst. , vol.82 , pp. 1006-1015
    • McGuire, W.L.1    Tandom, A.T.2    Allred, D.C.3    Chamnes, G.C.4    Clark, G.M.5
  • 2
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify Sonar targets
    • R.P. German and T.J. Sejnowski, "Analysis of hidden units in a layered network trained to classify Sonar targets," Neural Networks, vol. 1, pp. 75-89, 1988.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • German, R.P.1    Sejnowski, T.J.2
  • 3
    • 0026024281 scopus 로고
    • Training back-propagation neural networks to define and detect DNA-binding sites
    • Mc O'Neill, "Training back-propagation neural networks to define and detect DNA-binding sites," Nucleic Acids Res., vol. 19, pp. 313-318, 1991.
    • (1991) Nucleic Acids Res. , vol.19 , pp. 313-318
    • O'Neill, M.1
  • 4
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T.J. Sejnowski, "Predicting the secondary structure of globular proteins using neural network models," J. Mol. Biol., vol. 202, pp. 865-884, 1988.
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 5
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical approach
    • H. White, "Learning in artificial neural networks: A statistical approach," Neural Computation, vol. 1, pp. 425-464, 1989.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 6
    • 0028788276 scopus 로고
    • Application of neural networks to clinicla medicine
    • W.G. Baxt, "Application of neural networks to clinicla medicine," Lancet, vol. 346, pp. 1135-1138, 1995.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 7
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • P.M. Ravdin and G.M. Clark, "A practical application of neural network analysis for predicting outcome of individual breast cancer patients," Breast Cancer Research and Treatment, vol. 22, pp. 285-293, 1992.
    • (1992) Breast Cancer Research and Treatment , vol.22 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 8
    • 3543126318 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma
    • M. Jefferson, N. Pendleton, B. Lucas, and M. Horan, "Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma," American Cancer Society, 1996.
    • (1996) American Cancer Society
    • Jefferson, M.1    Pendleton, N.2    Lucas, B.3    Horan, M.4
  • 9
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • S.A. Kaplan and P. Meier, "Nonparametric estimation from incomplete observations," J. Am. Stat. Assoc., vol. 53, pp 457-481, 1958.
    • (1958) J. Am. Stat. Assoc. , vol.53 , pp. 457-481
    • Kaplan, S.A.1    Meier, P.2
  • 10
    • 0000336139 scopus 로고
    • Regression models and life tables
    • D.R. Cox: "Regression models and life tables," J.R. Stat. Soc., vol. 34, pp. 187-220, 1972.
    • (1972) J.R. Stat. Soc. , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 13
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • K. Funahashi, "Multilayer neural networks and Bayes decision theory," Neural Networks, vol. 11, pp. 209-213, 1998.
    • (1998) Neural Networks , vol.11 , pp. 209-213
    • Funahashi, K.1
  • 14
    • 0007309779 scopus 로고    scopus 로고
    • A short proof of the posterior probability property of classifier neural networks
    • R. Rojas, "A short proof of the posterior probability property of classifier neural networks," Neural Computation, vol. 8, pp. 41-43, 1996.
    • (1996) Neural Computation , vol.8 , pp. 41-43
    • Rojas, R.1
  • 15
    • 0004141541 scopus 로고
    • Connectionist learning procedures
    • Carnegie-Mellon University, Pittsburgh, PA
    • G.E. Hinton, "Connectionist learning procedures," Technical report CMU-CS-87-115, Carnegie-Mellon University, Pittsburgh, PA, 1987.
    • (1987) Technical Report , vol.CMU-CS-87-115
    • Hinton, G.E.1
  • 17
    • 0003420910 scopus 로고
    • The Cascade Correlation Learning Architecture
    • Carnegie-Mellon University, Pittsburgh, PA
    • S. Fahlma and C. Lebiere, "The Cascade Correlation Learning Architecture," Technical report CMU-CS-90-100, Carnegie-Mellon University, Pittsburgh, PA, 1990.
    • (1990) Technical Report , vol.CMU-CS-90-100
    • Fahlma, S.1    Lebiere, C.2
  • 20
    • 0024030633 scopus 로고
    • Model structure selection for multivariable systems by cross-validation
    • P. Janssen et al., "Model structure selection for multivariable systems by cross-validation," International Journal of Control, vol. 47, pp. 1737-1758, 1988.
    • (1988) International Journal of Control , vol.47 , pp. 1737-1758
    • Janssen, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.