-
1
-
-
0025279110
-
How to use prognostic factors in axillary node-negative breast cancer patients
-
W.L. McGuire, A.T. Tandom, D.C. Allred, G.C. Chamnes, and G.M. Clark, "How to use prognostic factors in axillary node-negative breast cancer patients," J. Natl. Cancer Inst., vol. 82, pp. 1006-1015, 1990.
-
(1990)
J. Natl. Cancer Inst.
, vol.82
, pp. 1006-1015
-
-
McGuire, W.L.1
Tandom, A.T.2
Allred, D.C.3
Chamnes, G.C.4
Clark, G.M.5
-
2
-
-
0023843391
-
Analysis of hidden units in a layered network trained to classify Sonar targets
-
R.P. German and T.J. Sejnowski, "Analysis of hidden units in a layered network trained to classify Sonar targets," Neural Networks, vol. 1, pp. 75-89, 1988.
-
(1988)
Neural Networks
, vol.1
, pp. 75-89
-
-
German, R.P.1
Sejnowski, T.J.2
-
3
-
-
0026024281
-
Training back-propagation neural networks to define and detect DNA-binding sites
-
Mc O'Neill, "Training back-propagation neural networks to define and detect DNA-binding sites," Nucleic Acids Res., vol. 19, pp. 313-318, 1991.
-
(1991)
Nucleic Acids Res.
, vol.19
, pp. 313-318
-
-
O'Neill, M.1
-
4
-
-
0023803244
-
Predicting the secondary structure of globular proteins using neural network models
-
N. Qian and T.J. Sejnowski, "Predicting the secondary structure of globular proteins using neural network models," J. Mol. Biol., vol. 202, pp. 865-884, 1988.
-
(1988)
J. Mol. Biol.
, vol.202
, pp. 865-884
-
-
Qian, N.1
Sejnowski, T.J.2
-
5
-
-
0000243355
-
Learning in artificial neural networks: A statistical approach
-
H. White, "Learning in artificial neural networks: A statistical approach," Neural Computation, vol. 1, pp. 425-464, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 425-464
-
-
White, H.1
-
6
-
-
0028788276
-
Application of neural networks to clinicla medicine
-
W.G. Baxt, "Application of neural networks to clinicla medicine," Lancet, vol. 346, pp. 1135-1138, 1995.
-
(1995)
Lancet
, vol.346
, pp. 1135-1138
-
-
Baxt, W.G.1
-
7
-
-
0026794564
-
A practical application of neural network analysis for predicting outcome of individual breast cancer patients
-
P.M. Ravdin and G.M. Clark, "A practical application of neural network analysis for predicting outcome of individual breast cancer patients," Breast Cancer Research and Treatment, vol. 22, pp. 285-293, 1992.
-
(1992)
Breast Cancer Research and Treatment
, vol.22
, pp. 285-293
-
-
Ravdin, P.M.1
Clark, G.M.2
-
8
-
-
3543126318
-
Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma
-
M. Jefferson, N. Pendleton, B. Lucas, and M. Horan, "Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma," American Cancer Society, 1996.
-
(1996)
American Cancer Society
-
-
Jefferson, M.1
Pendleton, N.2
Lucas, B.3
Horan, M.4
-
9
-
-
33845382806
-
Nonparametric estimation from incomplete observations
-
S.A. Kaplan and P. Meier, "Nonparametric estimation from incomplete observations," J. Am. Stat. Assoc., vol. 53, pp 457-481, 1958.
-
(1958)
J. Am. Stat. Assoc.
, vol.53
, pp. 457-481
-
-
Kaplan, S.A.1
Meier, P.2
-
10
-
-
0000336139
-
Regression models and life tables
-
D.R. Cox: "Regression models and life tables," J.R. Stat. Soc., vol. 34, pp. 187-220, 1972.
-
(1972)
J.R. Stat. Soc.
, vol.34
, pp. 187-220
-
-
Cox, D.R.1
-
13
-
-
0032029357
-
Multilayer neural networks and Bayes decision theory
-
K. Funahashi, "Multilayer neural networks and Bayes decision theory," Neural Networks, vol. 11, pp. 209-213, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 209-213
-
-
Funahashi, K.1
-
14
-
-
0007309779
-
A short proof of the posterior probability property of classifier neural networks
-
R. Rojas, "A short proof of the posterior probability property of classifier neural networks," Neural Computation, vol. 8, pp. 41-43, 1996.
-
(1996)
Neural Computation
, vol.8
, pp. 41-43
-
-
Rojas, R.1
-
15
-
-
0004141541
-
Connectionist learning procedures
-
Carnegie-Mellon University, Pittsburgh, PA
-
G.E. Hinton, "Connectionist learning procedures," Technical report CMU-CS-87-115, Carnegie-Mellon University, Pittsburgh, PA, 1987.
-
(1987)
Technical Report
, vol.CMU-CS-87-115
-
-
Hinton, G.E.1
-
17
-
-
0003420910
-
The Cascade Correlation Learning Architecture
-
Carnegie-Mellon University, Pittsburgh, PA
-
S. Fahlma and C. Lebiere, "The Cascade Correlation Learning Architecture," Technical report CMU-CS-90-100, Carnegie-Mellon University, Pittsburgh, PA, 1990.
-
(1990)
Technical Report
, vol.CMU-CS-90-100
-
-
Fahlma, S.1
Lebiere, C.2
-
19
-
-
0001504093
-
Statistical theory of overtraining - Is cross-validation asymptotically effective?
-
S. Amari, N. Murata, K.R. Muller, M. Finke, and H. Yang, "Statistical theory of overtraining - Is cross-validation asymptotically effective?" Advances in Neural Information Processing Systems, vol. 8, pp. 176-182, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 176-182
-
-
Amari, S.1
Murata, N.2
Muller, K.R.3
Finke, M.4
Yang, H.5
-
20
-
-
0024030633
-
Model structure selection for multivariable systems by cross-validation
-
P. Janssen et al., "Model structure selection for multivariable systems by cross-validation," International Journal of Control, vol. 47, pp. 1737-1758, 1988.
-
(1988)
International Journal of Control
, vol.47
, pp. 1737-1758
-
-
Janssen, P.1
|