메뉴 건너뛰기




Volumn 24, Issue 2, 2010, Pages 269-281

A heuristic method for learning Bayesian networks using discrete particle swarm optimization

Author keywords

Bayesian networks; Discrete PSO; Genetic algorithms; PSO; Structural learning; Uncertainty

Indexed keywords

BAYESIAN NETWORKS; GENETIC ALGORITHMS; HEURISTIC ALGORITHMS; HEURISTIC METHODS; LEARNING SYSTEMS; PARTICLE SWARM OPTIMIZATION (PSO); STRUCTURAL OPTIMIZATION; SWARM INTELLIGENCE;

EID: 77954957899     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0239-6     Document Type: Article
Times cited : (37)

References (34)
  • 2
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • Heckerman D (1997) Bayesian networks for data mining. Data Mining Knowl Discov 1: 79-119.
    • (1997) Data Mining Knowl Discov , vol.1 , pp. 79-119
    • Heckerman, D.1
  • 3
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D et al (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 2: 197-243.
    • (1995) Mach Learn , vol.2 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2
  • 4
    • 0031274383 scopus 로고    scopus 로고
    • Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data
    • Etxeberria R, Larrañaga P, Picaza JM (1997) Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data. Pattern Recognit Lett 18: 1269-1273.
    • (1997) Pattern Recognit Lett , vol.18 , pp. 1269-1273
    • Etxeberria, R.1    Larrañaga, P.2    Picaza, J.M.3
  • 5
    • 0008580731 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle: Basic properties
    • Suzuki J (1999) Learning Bayesian belief networks based on the minimum description length principle: basic properties. IEICE Trans Fundam Electron Commun Comput Sci E82-A: 2237-2245.
    • (1999) IEICE Trans Fundam Electron Commun Comput Sci , vol.E82-A , pp. 2237-2245
    • Suzuki, J.1
  • 6
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian network from data: An information-theory based approached
    • Cheng J, Greiner R, Kelly J, Bell D, Liu W (2002) Learning Bayesian network from data: an information-theory based approached. Artif Intell 137: 43-90.
    • (2002) Artif Intell , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 7
    • 77954952440 scopus 로고    scopus 로고
    • Robinson RW (1977) Counting unlabeled acyclic digraphs. In: Little CHC (ed) Combinatorial mathematics. Springer Lecture Notes in Math., vol 622, pp 28-43.
  • 8
    • 77954951972 scopus 로고    scopus 로고
    • Chickering DM, Geiger D, Heckerman D (1994) Learning Bayesian networks is NP-hard. Microsoft Res., Redmond, WA, MSR-TR-94-17.
  • 10
    • 77954954784 scopus 로고    scopus 로고
    • Alcobé JR (2004) Incremental Hill-climbing search applied to Bayesian network structure learning. In: Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy.
  • 11
    • 77954952923 scopus 로고    scopus 로고
    • Larrañaga P, Murga RH, Poza M, Kuijpers CMH (1995) Structure learning of Bayesian networks by hybrid genetic algorithms. In: Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics, pp 310-316.
  • 13
    • 0030192667 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for best ordering with genetic algorithm
    • Larrañaga P, Kuijpers CMH, Murga RH, Yurramendi Y (1996) Learning Bayesian network structures by searching for best ordering with genetic algorithm. IEEE Trans Syst Man Cybernet 26(4): 487-493.
    • (1996) IEEE Trans Syst Man Cybernet , vol.26 , Issue.4 , pp. 487-493
    • Larrañaga, P.1    Kuijpers, C.M.H.2    Murga, R.H.3    Yurramendi, Y.4
  • 14
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks-an approach based on the MDL principle
    • Lam W, Bacchus F (1994) Learning Bayesian belief networks-an approach based on the MDL principle. Comput Intell 10: 269-293.
    • (1994) Comput Intell , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 15
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp 1942-1948.
  • 16
    • 51049116645 scopus 로고    scopus 로고
    • A new and improved version of particles warm optimization algorithm with global-local best parameters
    • Senthil Arumugam M, Rao MVC, Chandramohan A (2008) A new and improved version of particles warm optimization algorithm with global-local best parameters. Knowl Inform Syst 16(3): 331-357.
    • (2008) Knowl Inform Syst , vol.16 , Issue.3 , pp. 331-357
    • Senthil Arumugam, M.1    Rao, M.V.C.2    Chandramohan, A.3
  • 18
    • 0000423794 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 264(5163): 1297-1301.
    • (1983) Science , vol.264 , Issue.5163 , pp. 1297-1301
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 19
    • 0037058296 scopus 로고    scopus 로고
    • Particle swarm optimization for task assignment problem
    • Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocessors Microsyst 26: 363-371.
    • (2002) Microprocessors Microsyst , vol.26 , pp. 363-371
    • Salman, A.1    Ahmad, I.2    Al-Madani, S.3
  • 20
    • 33749599747 scopus 로고    scopus 로고
    • Research on learning Bayesian networks by particle swarm optimization
    • Heng X-C, Qin Z, Wang X-H, Shao L-P (2006) Research on learning Bayesian networks by particle swarm optimization. Inform Technol J 5(3): 540-545.
    • (2006) Inform Technol J , vol.5 , Issue.3 , pp. 540-545
    • Heng, X.-C.1    Qin, Z.2    Wang, X.-H.3    Shao, L.-P.4
  • 21
    • 34548852842 scopus 로고    scopus 로고
    • Heng X-C, Qin Z, Tian L, Shao L-P (2007) Learning bayesian network structures with discrete particle swarm optimization algorithm. FOCI 2007, pp 47-52.
  • 22
    • 34548756036 scopus 로고    scopus 로고
    • Heng X-C, Qin Z, Tian L, Shao L-P (2007) Research on structure learning of dynamic bayesian networks by particle swarm optimization. CI-ALife 2007, pp 85-91.
  • 23
    • 33751368805 scopus 로고    scopus 로고
    • Li X-L, Wang S-C, He X-D (2006) Learning Bayesian networks structures based on memory binary particle swarm optimization. SEAL 2006, LNCS 4247, pp 568-574.
  • 24
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits EA (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9: 309-347.
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 25
    • 0031700696 scopus 로고    scopus 로고
    • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proc. IEEE Int. Conf. On Evolutionary Computation. Anchorage, AK, USA, pp. 69-73.
  • 26
    • 0031352450 scopus 로고    scopus 로고
    • Kennedy J, Eberhart RC (1997) A Discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE conference on systems, man and cybernetics, pp 4104-4108.
  • 27
  • 28
    • 77954952439 scopus 로고    scopus 로고
    • Beinlinch IA, Suermondt HJ, Chavez RM, and Cooper GF (1989) The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In: Proceedings of the Second European Conf. Artificial Intelligence in Medicine, pp. 247-256.
  • 29
    • 85012775611 scopus 로고    scopus 로고
    • Henrion M (1988) Propagating uncertainty in Bayesian networks by logic sampling. In: Lemmar J, Kanal L (eds) Proceedings of the 2nd conference on uncertainty artificial intelligence, Amsterdam, pp 149-163.
  • 30
    • 77954958114 scopus 로고    scopus 로고
    • Herskovits E (1991) Computer based probabilistic-network construction. Doctoral dissertation. Medical Information Sciences, Stanford University.
  • 31
    • 0029517385 scopus 로고    scopus 로고
    • Kennedy J, Eberhart RC (1995) A new optimizer using particle swarm theory. In: Sixth international symposium on micro machine and human science, Nagoya, pp 39-43.
  • 32
    • 67649948102 scopus 로고    scopus 로고
    • Bayesian network based business information retrieval model
    • Wang Z, Wang Q, Wang D-W (2009) Bayesian network based business information retrieval model. Knowl Inform Syst 20(1): 63-79.
    • (2009) Knowl Inform Syst , vol.20 , Issue.1 , pp. 63-79
    • Wang, Z.1    Wang, Q.2    Wang, D.-W.3
  • 33
    • 77954951379 scopus 로고    scopus 로고
    • Kjaulff U (1992) A computational scheme for reasoning in dynamic probabilistic networks. In: Proceedings of the eighth conferebce on uncertainty in artificial intelligence, pp 121-129.
  • 34
    • 54049122306 scopus 로고    scopus 로고
    • Adaptive learning of dynamic Bayesian networks with changing structures by detecting geometric structures of time series
    • Wang KJ, Zhang JY, Shen FS, Shi LF (2008) Adaptive learning of dynamic Bayesian networks with changing structures by detecting geometric structures of time series. Knowl Inform Syst 17(1): 121-133.
    • (2008) Knowl Inform Syst , vol.17 , Issue.1 , pp. 121-133
    • Wang, K.J.1    Zhang, J.Y.2    Shen, F.S.3    Shi, L.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.