-
2
-
-
57749209893
-
The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes
-
Luijsterburg M.S., et al. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2008, 43:393-418.
-
(2008)
Crit. Rev. Biochem. Mol. Biol.
, vol.43
, pp. 393-418
-
-
Luijsterburg, M.S.1
-
3
-
-
33947265929
-
A common topology for bacterial and eukaryotic transcription initiation?
-
Travers A., Muskhelishvili G. A common topology for bacterial and eukaryotic transcription initiation?. EMBO Rep. 2007, 8:147-151.
-
(2007)
EMBO Rep.
, vol.8
, pp. 147-151
-
-
Travers, A.1
Muskhelishvili, G.2
-
5
-
-
79959484677
-
Signals and combinatorial functions of histone modifications
-
Suganuma T., Workman J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 2011, 80:473-499.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 473-499
-
-
Suganuma, T.1
Workman, J.L.2
-
6
-
-
0033529565
-
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
-
Kornberg R.D., Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999, 98:285-294.
-
(1999)
Cell
, vol.98
, pp. 285-294
-
-
Kornberg, R.D.1
Lorch, Y.2
-
7
-
-
0027477501
-
Multiple functions of nucleosomes and regulatory factors in transcription
-
Workman J.L., Buchman A.R. Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem. Sci. 1993, 18:90-95.
-
(1993)
Trends Biochem. Sci.
, vol.18
, pp. 90-95
-
-
Workman, J.L.1
Buchman, A.R.2
-
8
-
-
0342936465
-
Regulation of gene expression by nucleosomes
-
Svaren J., Horz W. Regulation of gene expression by nucleosomes. Curr. Opin. Genet. Dev. 1996, 6:164-170.
-
(1996)
Curr. Opin. Genet. Dev.
, vol.6
, pp. 164-170
-
-
Svaren, J.1
Horz, W.2
-
9
-
-
0025224576
-
Nucleosomes: regulators of transcription
-
Grunstein M. Nucleosomes: regulators of transcription. Trends Genet. 1990, 6:395-400.
-
(1990)
Trends Genet.
, vol.6
, pp. 395-400
-
-
Grunstein, M.1
-
10
-
-
0032518443
-
Chromatin and transcription - how transcription factors battle with a repressive chromatin environment
-
Gregory P.D., Horz W. Chromatin and transcription - how transcription factors battle with a repressive chromatin environment. Eur. J. Biochem. 1998, 251:9-18.
-
(1998)
Eur. J. Biochem.
, vol.251
, pp. 9-18
-
-
Gregory, P.D.1
Horz, W.2
-
11
-
-
78651477233
-
High-resolution genome-wide mapping of the primary structure of chromatin
-
Zhang Z., Pugh B.F. High-resolution genome-wide mapping of the primary structure of chromatin. Cell 2011, 144:175-186.
-
(2011)
Cell
, vol.144
, pp. 175-186
-
-
Zhang, Z.1
Pugh, B.F.2
-
12
-
-
22744432660
-
Genome-scale identification of nucleosome positions in S. cerevisiae
-
Yuan G.C., et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 2005, 309:626-630.
-
(2005)
Science
, vol.309
, pp. 626-630
-
-
Yuan, G.C.1
-
13
-
-
34748826166
-
A high-resolution atlas of nucleosome occupancy in yeast
-
Lee W., et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 2007, 39:1235-1244.
-
(2007)
Nat. Genet.
, vol.39
, pp. 1235-1244
-
-
Lee, W.1
-
14
-
-
77954097433
-
Analysis of primary structure of chromatin with next-generation sequencing
-
Tolstorukov M.Y., et al. Analysis of primary structure of chromatin with next-generation sequencing. Epigenomics 2010, 2:187-197.
-
(2010)
Epigenomics
, vol.2
, pp. 187-197
-
-
Tolstorukov, M.Y.1
-
15
-
-
74949110964
-
High-resolution nucleosome mapping reveals transcription-dependent promoter packaging
-
Weiner A., et al. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 2010, 20:90-100.
-
(2010)
Genome Res.
, vol.20
, pp. 90-100
-
-
Weiner, A.1
-
16
-
-
79955559703
-
Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation
-
Xi Y., et al. Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. Genome Res. 2011, 21:718-724.
-
(2011)
Genome Res.
, vol.21
, pp. 718-724
-
-
Xi, Y.1
-
17
-
-
43749099875
-
Nucleosome organization in the Drosophila genome
-
Mavrich T.N., et al. Nucleosome organization in the Drosophila genome. Nature 2008, 453:358-362.
-
(2008)
Nature
, vol.453
, pp. 358-362
-
-
Mavrich, T.N.1
-
18
-
-
39749145198
-
Dynamic regulation of nucleosome positioning in the human genome
-
Schones D.E., et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132:887-898.
-
(2008)
Cell
, vol.132
, pp. 887-898
-
-
Schones, D.E.1
-
19
-
-
62649085538
-
The DNA-encoded nucleosome organization of a eukaryotic genome
-
Kaplan N., et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 2009, 458:362-366.
-
(2009)
Nature
, vol.458
, pp. 362-366
-
-
Kaplan, N.1
-
20
-
-
76949093375
-
Nucleosome positioning: how is it established, and why does it matter?
-
Radman-Livaja M., Rando O.J. Nucleosome positioning: how is it established, and why does it matter?. Dev. Biol. 2010, 339:258-266.
-
(2010)
Dev. Biol.
, vol.339
, pp. 258-266
-
-
Radman-Livaja, M.1
Rando, O.J.2
-
21
-
-
41749091787
-
Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation
-
Shivaswamy S., et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 2008, 6:e65.
-
(2008)
PLoS Biol.
, vol.6
-
-
Shivaswamy, S.1
-
22
-
-
77954659099
-
Relationship between nucleosome positioning and DNA methylation
-
Chodavarapu R.K., et al. Relationship between nucleosome positioning and DNA methylation. Nature 2010, 466:388-392.
-
(2010)
Nature
, vol.466
, pp. 388-392
-
-
Chodavarapu, R.K.1
-
23
-
-
79958777000
-
The nucleosome map of the mammalian liver
-
Li Z., et al. The nucleosome map of the mammalian liver. Nat. Struct. Mol. Biol. 2011, 18:742-746.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 742-746
-
-
Li, Z.1
-
24
-
-
79959557189
-
Determinants of nucleosome organization in primary human cells
-
Valouev A., et al. Determinants of nucleosome organization in primary human cells. Nature 2011, 474:516-520.
-
(2011)
Nature
, vol.474
, pp. 516-520
-
-
Valouev, A.1
-
25
-
-
79953797454
-
An effect of DNA sequence on nucleosome occupancy and removal
-
Wang X., et al. An effect of DNA sequence on nucleosome occupancy and removal. Nat. Struct. Mol. Biol. 2011, 18:507-509.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 507-509
-
-
Wang, X.1
-
26
-
-
77955365269
-
Evidence against a genomic code for nucleosome positioning
-
Zhang Y., et al. Evidence against a genomic code for nucleosome positioning. Nat. Struct. Mol. Biol. 2010, 17:920-923.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 920-923
-
-
Zhang, Y.1
-
27
-
-
79958077283
-
Nucleosome positioning in Saccharomyces cerevisiae
-
Jansen A., Verstrepen K.J. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2011, 75:301-320.
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 301-320
-
-
Jansen, A.1
Verstrepen, K.J.2
-
28
-
-
81055155906
-
Nucleosomes and the accessibility problem
-
Wang X., et al. Nucleosomes and the accessibility problem. Trends Genet. 2011, 27:487-492.
-
(2011)
Trends Genet.
, vol.27
, pp. 487-492
-
-
Wang, X.1
-
29
-
-
75149135277
-
G+C content dominates intrinsic nucleosome occupancy
-
Tillo D., Hughes T.R. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 2009, 10:442.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 442
-
-
Tillo, D.1
Hughes, T.R.2
-
30
-
-
33747500567
-
A genomic code for nucleosome positioning
-
Segal E., et al. A genomic code for nucleosome positioning. Nature 2006, 442:772-778.
-
(2006)
Nature
, vol.442
, pp. 772-778
-
-
Segal, E.1
-
31
-
-
68249142923
-
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo
-
Zhang Y., et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 2009, 16:847-852.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 847-852
-
-
Zhang, Y.1
-
32
-
-
77955410104
-
Nucleosome sequence preferences influence in vivo nucleosome organization
-
author reply 920-912
-
Kaplan N., et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nat. Struct. Mol. Biol. 2010, 17:918-920. author reply 920-912.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 918-920
-
-
Kaplan, N.1
-
33
-
-
77950361329
-
Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?
-
Stein A., et al. Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?. Nucleic Acids Res. 2010, 38:709-719.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 709-719
-
-
Stein, A.1
-
34
-
-
77955388311
-
A preoccupied position on nucleosomes
-
Pugh B.F. A preoccupied position on nucleosomes. Nat. Struct. Mol. Biol. 2010, 17:923.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 923
-
-
Pugh, B.F.1
-
35
-
-
0023777538
-
Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism
-
Kornberg R.D., Stryer L. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 1988, 16:6677-6690.
-
(1988)
Nucleic Acids Res.
, vol.16
, pp. 6677-6690
-
-
Kornberg, R.D.1
Stryer, L.2
-
36
-
-
46449112319
-
A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome
-
Mavrich T.N., et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 2008, 18:1073-1083.
-
(2008)
Genome Res.
, vol.18
, pp. 1073-1083
-
-
Mavrich, T.N.1
-
37
-
-
78049434489
-
Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
-
Mobius W., Gerland U. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput. Biol. 2010, 6:e1000891.
-
(2010)
PLoS Comput. Biol.
, vol.6
-
-
Mobius, W.1
Gerland, U.2
-
38
-
-
79956316470
-
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
-
Zhang Z., et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 2011, 332:977-980.
-
(2011)
Science
, vol.332
, pp. 977-980
-
-
Zhang, Z.1
-
39
-
-
26844511498
-
Histone variant H2A.Z. marks the 5' ends of both active and inactive genes in euchromatin
-
Raisner R.M., et al. Histone variant H2A.Z. marks the 5' ends of both active and inactive genes in euchromatin. Cell 2005, 123:233-248.
-
(2005)
Cell
, vol.123
, pp. 233-248
-
-
Raisner, R.M.1
-
40
-
-
76349103252
-
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
-
Lantermann A.B., et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 2010, 17:251-257.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 251-257
-
-
Lantermann, A.B.1
-
41
-
-
77949393272
-
High nucleosome occupancy is encoded at human regulatory sequences
-
Tillo D., et al. High nucleosome occupancy is encoded at human regulatory sequences. PLoS ONE 2010, 5:e9129.
-
(2010)
PLoS ONE
, vol.5
-
-
Tillo, D.1
-
42
-
-
65249164132
-
Mechanisms that specify promoter nucleosome location and identity
-
Hartley P.D., Madhani H.D. Mechanisms that specify promoter nucleosome location and identity. Cell 2009, 137:445-458.
-
(2009)
Cell
, vol.137
, pp. 445-458
-
-
Hartley, P.D.1
Madhani, H.D.2
-
43
-
-
60149095014
-
Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains
-
Cuddapah S., et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 2009, 19:24-32.
-
(2009)
Genome Res.
, vol.19
, pp. 24-32
-
-
Cuddapah, S.1
-
44
-
-
48249153426
-
The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome
-
Fu Y., et al. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008, 4:e1000138.
-
(2008)
PLoS Genet.
, vol.4
-
-
Fu, Y.1
-
45
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009, 78:273-304.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
46
-
-
72949099482
-
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
-
Racki L.R., et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 2009, 462:1016-1021.
-
(2009)
Nature
, vol.462
, pp. 1016-1021
-
-
Racki, L.R.1
-
47
-
-
80053140931
-
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization
-
Gkikopoulos T., et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 2011, 333:1758-1760.
-
(2011)
Science
, vol.333
, pp. 1758-1760
-
-
Gkikopoulos, T.1
-
48
-
-
0033604609
-
Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast
-
Wyrick J.J., et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 1999, 402:418-421.
-
(1999)
Nature
, vol.402
, pp. 418-421
-
-
Wyrick, J.J.1
-
49
-
-
79959811626
-
Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output
-
Celona B., et al. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol. 2011, 9:e1001086.
-
(2011)
PLoS Biol.
, vol.9
-
-
Celona, B.1
-
50
-
-
80455144479
-
Pioneer transcription factors: establishing competence for gene expression
-
Zaret K.S., Carroll J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011, 25:2227-2241.
-
(2011)
Genes Dev.
, vol.25
, pp. 2227-2241
-
-
Zaret, K.S.1
Carroll, J.S.2
-
51
-
-
68149120313
-
Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II
-
Hodges C., et al. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 2009, 325:626-628.
-
(2009)
Science
, vol.325
, pp. 626-628
-
-
Hodges, C.1
-
52
-
-
82955167888
-
The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes
-
Bintu L., et al. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. Nat. Struct. Mol. Biol. 2011, 18:1394-1399.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1394-1399
-
-
Bintu, L.1
-
53
-
-
79959803077
-
Patterns and mechanisms of ancestral histone protein inheritance in budding yeast
-
Radman-Livaja M., et al. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol. 2011, 9:e1001075.
-
(2011)
PLoS Biol.
, vol.9
-
-
Radman-Livaja, M.1
-
54
-
-
78751659330
-
Nascent transcript sequencing visualizes transcription at nucleotide resolution
-
Churchman L.S., Weissman J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011, 469:368-373.
-
(2011)
Nature
, vol.469
, pp. 368-373
-
-
Churchman, L.S.1
Weissman, J.S.2
-
55
-
-
37249077649
-
Chromatin remodelling at promoters suppresses antisense transcription
-
Whitehouse I., et al. Chromatin remodelling at promoters suppresses antisense transcription. Nature 2007, 450:1031-1035.
-
(2007)
Nature
, vol.450
, pp. 1031-1035
-
-
Whitehouse, I.1
-
56
-
-
77749261651
-
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription
-
Quan T.K., Hartzog G.A. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 2010, 184:321-334.
-
(2010)
Genetics
, vol.184
, pp. 321-334
-
-
Quan, T.K.1
Hartzog, G.A.2
-
57
-
-
63449135035
-
Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization
-
Field Y., et al. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat. Genet. 2009, 41:438-445.
-
(2009)
Nat. Genet.
, vol.41
, pp. 438-445
-
-
Field, Y.1
-
58
-
-
77955045449
-
The role of nucleosome positioning in the evolution of gene regulation
-
Tsankov A.M., et al. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 2010, 8:e1000414.
-
(2010)
PLoS Biol.
, vol.8
-
-
Tsankov, A.M.1
-
59
-
-
77952245290
-
Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences
-
Tirosh I., et al. Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences. Mol. Syst. Biol. 2010, 6:365.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 365
-
-
Tirosh, I.1
-
60
-
-
80555156654
-
Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization
-
Tsankov A., et al. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 2011, 21:1851-1862.
-
(2011)
Genome Res.
, vol.21
, pp. 1851-1862
-
-
Tsankov, A.1
-
61
-
-
80053356939
-
Nucleosome-coupled expression differences in closely-related species
-
Guan Y., et al. Nucleosome-coupled expression differences in closely-related species. BMC Genomics 2011, 12:466.
-
(2011)
BMC Genomics
, vol.12
, pp. 466
-
-
Guan, Y.1
-
62
-
-
83255187902
-
Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns
-
Tsui K., et al. Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Mol. Cell. Biol. 2011, 31:4348-4355.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 4348-4355
-
-
Tsui, K.1
-
63
-
-
58449116917
-
Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites
-
Sasaki S., et al. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 2009, 323:401-404.
-
(2009)
Science
, vol.323
, pp. 401-404
-
-
Sasaki, S.1
-
64
-
-
79953788666
-
Impact of chromatin structure on sequence variability in the human genome
-
Tolstorukov M.Y., et al. Impact of chromatin structure on sequence variability in the human genome. Nat. Struct. Mol. Biol. 2011, 18:510-515.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 510-515
-
-
Tolstorukov, M.Y.1
-
65
-
-
80555156662
-
Widespread signatures of recent selection linked to nucleosome positioning in the human lineage
-
Prendergast J.G., Semple C.A. Widespread signatures of recent selection linked to nucleosome positioning in the human lineage. Genome Res. 2011, 21:1777-1787.
-
(2011)
Genome Res.
, vol.21
, pp. 1777-1787
-
-
Prendergast, J.G.1
Semple, C.A.2
-
66
-
-
34249026300
-
High-resolution profiling of histone methylations in the human genome
-
Barski A., et al. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
-
(2007)
Cell
, vol.129
, pp. 823-837
-
-
Barski, A.1
-
67
-
-
46249112085
-
Combinatorial patterns of histone acetylations and methylations in the human genome
-
Wang Z., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 2008, 40:897-903.
-
(2008)
Nat. Genet.
, vol.40
, pp. 897-903
-
-
Wang, Z.1
-
68
-
-
57449095143
-
Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq
-
Zhang Y., et al. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics 2008, 9:537.
-
(2008)
BMC Genomics
, vol.9
, pp. 537
-
-
Zhang, Y.1
|