-
1
-
-
64249107059
-
Evidence for cardiomyocyte renewal in humans
-
Bergmann, O. et al 2009. Evidence for cardiomyocyte renewal in humans. Science 324: 98-102.
-
(2009)
Science
, vol.324
, pp. 98-102
-
-
Bergmann, O.1
-
2
-
-
34547699399
-
Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury
-
Hsieh, P.C. et al 2007. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13: 970-974.
-
(2007)
Nat. Med.
, vol.13
, pp. 970-974
-
-
Hsieh, P.C.1
-
3
-
-
79953903083
-
Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair
-
Loffredo, F.S. et al. 2011. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8: 389-398.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 389-398
-
-
Loffredo, F.S.1
-
4
-
-
79959819263
-
De novo cardiomyocytes from within the activated adult heart after injury
-
Smart, N. et al 2011. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474: 640-644.
-
(2011)
Nature
, vol.474
, pp. 640-644
-
-
Smart, N.1
-
5
-
-
79956334658
-
Heart regeneration
-
Laflamme, M.A. & C.E. Murry 2011. Heart regeneration. Nature 473: 326-335.
-
(2011)
Nature
, vol.473
, pp. 326-335
-
-
Laflamme, M.A.1
Murry, C.E.2
-
6
-
-
82755170946
-
Adult cardiac-resident MSC-like stem cells with a proepicardial origin
-
Chong, J.J. et al 2011. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9: 527-540.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 527-540
-
-
Chong, J.J.1
-
7
-
-
80053547300
-
Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology
-
Leri, A., J. Kajstura & P. Anversa 2011. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ. Res. 109: 941-961.
-
(2011)
Circ. Res.
, vol.109
, pp. 941-961
-
-
Leri, A.1
Kajstura, J.2
Anversa, P.3
-
8
-
-
77649217961
-
Second lineage of heart forming region provides new understanding of conotruncal heart defects
-
Nakajima, Y. 2010. Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit. Anom. (Kyoto) 50: 8-14.
-
(2010)
Congenit. Anom. (Kyoto)
, vol.50
, pp. 8-14
-
-
Nakajima, Y.1
-
9
-
-
33644680809
-
Building the mammalian heart from two sources of myocardial cells
-
Buckingham, M., S. Meilhac & S. Zaffran 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6: 826-835.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 826-835
-
-
Buckingham, M.1
Meilhac, S.2
Zaffran, S.3
-
10
-
-
77957265714
-
Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart
-
Aanhaanen, W.T. et al 2012. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ. Res. 107: 728-736.
-
(2012)
Circ. Res.
, vol.107
, pp. 728-736
-
-
Aanhaanen, W.T.1
-
11
-
-
78650743558
-
Early cardiac growth and the ballooning model of cardiac chamber formation
-
N. Rosenthal & R.P. Harvey, Eds.: Elsevier. New York
-
Moorman, A.F., G. van den Berg, R.H. Anderson, V.M. Christoffels 2010. Early cardiac growth and the ballooning model of cardiac chamber formation. In Heart Development and Regeneration, Vol. 1. N. Rosenthal & R.P. Harvey, Eds.: 219-233. Elsevier. New York
-
(2010)
Heart Development and Regeneration
, vol.1
, pp. 219-233
-
-
Moorman, A.F.1
van den Berg, G.2
Anderson, R.H.3
Christoffels, V.M.4
-
12
-
-
0346783332
-
Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
-
Cai, C.L. et al 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5: 877-889.
-
(2003)
Dev. Cell
, vol.5
, pp. 877-889
-
-
Cai, C.L.1
-
13
-
-
0035477641
-
The outflow tract of the heart is recruited from a novel heart-forming field
-
Mjaatvedt, C.H. et al 2001. The outflow tract of the heart is recruited from a novel heart-forming field. Dev. Biol. 238: 97-109.
-
(2001)
Dev. Biol.
, vol.238
, pp. 97-109
-
-
Mjaatvedt, C.H.1
-
14
-
-
0034839927
-
Conotruncal myocardium arises from a secondary heart field
-
Waldo, K.L. et al 2001. Conotruncal myocardium arises from a secondary heart field. Development 128: 3179-3188.
-
(2001)
Development
, vol.128
, pp. 3179-3188
-
-
Waldo, K.L.1
-
15
-
-
0035461911
-
The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm
-
Kelly, R.G., N.A. Brown & M.E. Buckingham 2001. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 1: 435-440.
-
(2001)
Dev. Cell
, vol.1
, pp. 435-440
-
-
Kelly, R.G.1
Brown, N.A.2
Buckingham, M.E.3
-
16
-
-
4043059202
-
Right ventricular myocardium derives from the anterior heart field
-
Zaffran, S. et al 2004. Right ventricular myocardium derives from the anterior heart field. Circ. Res. 95: 261-268.
-
(2004)
Circ. Res.
, vol.95
, pp. 261-268
-
-
Zaffran, S.1
-
17
-
-
2342518098
-
The clonal origin of myocardial cells in different regions of the embryonic mouse heart
-
Meilhac, S.M. et al 2004. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6: 685-698.
-
(2004)
Dev. Cell
, vol.6
, pp. 685-698
-
-
Meilhac, S.M.1
-
18
-
-
33845457194
-
+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
-
+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151-1165.
-
(2006)
Cell
, vol.127
, pp. 1151-1165
-
-
Moretti, A.1
-
19
-
-
33947165217
-
Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells
-
Sun, Y. et al 2007. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304: 286-296.
-
(2007)
Dev. Biol.
, vol.304
, pp. 286-296
-
-
Sun, Y.1
-
20
-
-
80053936438
-
The heart endocardium is derived from vascular endothelial progenitors
-
Milgrom-Hoffman, M. et al 2011. The heart endocardium is derived from vascular endothelial progenitors. Development 138: 4777-4787.
-
(2011)
Development
, vol.138
, pp. 4777-4787
-
-
Milgrom-Hoffman, M.1
-
21
-
-
34447116292
-
Cardiovascular development and the colonizing cardiac neural crest lineage
-
Snider, P. et al 2007. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 7: 1090-1113.
-
(2007)
ScientificWorldJournal
, vol.7
, pp. 1090-1113
-
-
Snider, P.1
-
22
-
-
84856115740
-
Signaling during epicardium and coronary vessel development
-
Perez-Pomares, J.M. & J.L. de la Pompa 2011. Signaling during epicardium and coronary vessel development. Circ. Res. 109: 1429-1442.
-
(2011)
Circ. Res.
, vol.109
, pp. 1429-1442
-
-
Perez-Pomares, J.M.1
de la Pompa, J.L.2
-
23
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai, C.L. et al 2008. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454: 104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
-
24
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou, B. et al 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454: 109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
-
25
-
-
67349150416
-
Concepts of cardiac development in retrospect
-
van den Berg, G. & A.F. Moorman 2009. Concepts of cardiac development in retrospect. Pediatr. Cardiol. 30: 580-587.
-
(2009)
Pediatr. Cardiol.
, vol.30
, pp. 580-587
-
-
van den Berg, G.1
Moorman, A.F.2
-
26
-
-
33748357932
-
Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation
-
Soufan, A.T. et al 2006. Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ. Res. 99: 545-552.
-
(2006)
Circ. Res.
, vol.99
, pp. 545-552
-
-
Soufan, A.T.1
-
27
-
-
79953035509
-
Formation of the building plan of the human heart: morphogenesis, growth, and differentiation
-
Sizarov, A. et al 2011. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation 123: 1125-1135.
-
(2011)
Circulation
, vol.123
, pp. 1125-1135
-
-
Sizarov, A.1
-
28
-
-
78650720052
-
The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format
-
de Boer, B.A. et al 2011. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format. Development 138: 159-167.
-
(2011)
Development
, vol.138
, pp. 159-167
-
-
de Boer, B.A.1
-
29
-
-
0034798853
-
Characterisation of postnatal growth of the murine heart
-
Leu, M., E. Ehler & J.C. Perriard 2001. Characterisation of postnatal growth of the murine heart. Anat. Embryol. (Berl). 204: 217-224.
-
(2001)
Anat. Embryol. (Berl).
, vol.204
, pp. 217-224
-
-
Leu, M.1
Ehler, E.2
Perriard, J.C.3
-
30
-
-
54249167065
-
Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart?
-
Porrello, E.R., R.E. Widdop & L.M. Delbridge 2008. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart? Clin. Exp. Pharmacol. Physiol. 35: 1358-1364.
-
(2008)
Clin. Exp. Pharmacol. Physiol.
, vol.35
, pp. 1358-1364
-
-
Porrello, E.R.1
Widdop, R.E.2
Delbridge, L.M.3
-
32
-
-
38849197532
-
Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish
-
Wills, A.A. et al 2008. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135: 183-192.
-
(2008)
Development
, vol.135
, pp. 183-192
-
-
Wills, A.A.1
-
33
-
-
0037073890
-
Heart regeneration in zebrafish
-
Poss, K.D., L.G. Wilson & M.T. Keating 2002. Heart regeneration in zebrafish. Science 298: 2188-2190.
-
(2002)
Science
, vol.298
, pp. 2188-2190
-
-
Poss, K.D.1
Wilson, L.G.2
Keating, M.T.3
-
34
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello, E.R. et al 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
-
35
-
-
79959427955
-
+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 138: 2895-2902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
-
36
-
-
79952527330
-
Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
-
Kikuchi, K. et al 2011. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20: 397-404.
-
(2011)
Dev. Cell
, vol.20
, pp. 397-404
-
-
Kikuchi, K.1
-
37
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina, A. et al 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127: 607-619.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
-
38
-
-
79955364546
-
Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
-
Gonzalez-Rosa, J.M. et al 2011. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138: 1663-1674.
-
(2011)
Development
, vol.138
, pp. 1663-1674
-
-
Gonzalez-Rosa, J.M.1
-
39
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling, C. et al 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
-
40
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi, K. et al 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
-
41
-
-
79955498411
-
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
-
Zhou, B. et al 2011. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121: 1894-1904.
-
(2011)
J. Clin. Invest
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
-
42
-
-
84055214880
-
Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes
-
Zhou, B. et al 2012. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell Cardiol. 52: 43-47.
-
(2012)
J. Mol. Cell Cardiol.
, vol.52
, pp. 43-47
-
-
Zhou, B.1
-
43
-
-
0035821988
-
Evidence that human cardiac myocytes divide after myocardial infarction
-
Beltrami, A.P. et al 2001. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344: 1750-1757.
-
(2001)
N. Engl. J. Med.
, vol.344
, pp. 1750-1757
-
-
Beltrami, A.P.1
-
44
-
-
53249133042
-
Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development
-
Drenckhahn, J.D. et al 2008. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev. Cell 15: 521-533.
-
(2008)
Dev. Cell
, vol.15
, pp. 521-533
-
-
Drenckhahn, J.D.1
-
45
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
Li, F. et al 1996. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28: 1737-1746.
-
(1996)
J. Mol. Cell Cardiol.
, vol.28
, pp. 1737-1746
-
-
Li, F.1
-
46
-
-
0030249340
-
Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart
-
Olivetti, G. et al 1996. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell Cardiol. 28: 2005-2016.
-
(1996)
J. Mol. Cell Cardiol.
, vol.28
, pp. 2005-2016
-
-
Olivetti, G.1
-
47
-
-
79951693039
-
Cardiac muscle regeneration: lessons from development
-
Mercola, M., P. Ruiz-Lozano & M.D. Schneider 2011. Cardiac muscle regeneration: lessons from development. Genes Dev. 25: 299-309.
-
(2011)
Genes Dev.
, vol.25
, pp. 299-309
-
-
Mercola, M.1
Ruiz-Lozano, P.2
Schneider, M.D.3
-
48
-
-
79959926623
-
Shedding new light on the mechanism underlying stem cell therapy for the heart
-
Mummery, C. & M.J. Goumans 2011. Shedding new light on the mechanism underlying stem cell therapy for the heart. Mol. Ther. 19: 1186-1188.
-
(2011)
Mol. Ther.
, vol.19
, pp. 1186-1188
-
-
Mummery, C.1
Goumans, M.J.2
-
49
-
-
41449094683
-
Lives of a heart cell: tracing the origins of cardiac progenitors
-
Martin-Puig, S., Z. Wang & K.R. Chien 2008. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2: 320-331.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 320-331
-
-
Martin-Puig, S.1
Wang, Z.2
Chien, K.R.3
-
50
-
-
82255175382
-
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial
-
Bolli, R. et al 2011. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847-1857.
-
(2011)
Lancet
, vol.378
, pp. 1847-1857
-
-
Bolli, R.1
-
51
-
-
0037205320
-
Cardiomyocyte cell cycle regulation
-
Pasumarthi, K.B. & L.J. Field 2002. Cardiomyocyte cell cycle regulation. Circ. Res. 90: 1044-1054.
-
(2002)
Circ. Res.
, vol.90
, pp. 1044-1054
-
-
Pasumarthi, K.B.1
Field, L.J.2
-
52
-
-
33750298315
-
FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction
-
Engel, F.B. et al 2006. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. USA. 103: 15546-15551.
-
(2006)
Proc. Natl. Acad. Sci. USA.
, vol.103
, pp. 15546-15551
-
-
Engel, F.B.1
-
53
-
-
34547691243
-
Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
-
Kuhn, B. et al 2007. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13: 962-969.
-
(2007)
Nat. Med.
, vol.13
, pp. 962-969
-
-
Kuhn, B.1
-
54
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell, K. et al 2009. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138: 257-270.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
-
55
-
-
55449100829
-
Toward microRNA-based therapeutics for heart disease: the sense in antisense
-
van Rooij, E., W.S. Marshall & E.N. Olson 2008. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103: 919-928.
-
(2008)
Circ. Res.
, vol.103
, pp. 919-928
-
-
van Rooij, E.1
Marshall, W.S.2
Olson, E.N.3
-
56
-
-
41149104867
-
Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction
-
Hassink, R.J. et al 2008. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78: 18-25.
-
(2008)
Cardiovasc. Res.
, vol.78
, pp. 18-25
-
-
Hassink, R.J.1
-
57
-
-
79955557870
-
Getting to the heart of myocardial stem cells and cell therapy
-
Rasmussen, T.L. et al 2011. Getting to the heart of myocardial stem cells and cell therapy. Circulation 123: 1771-1779.
-
(2011)
Circulation
, vol.123
, pp. 1771-1779
-
-
Rasmussen, T.L.1
-
58
-
-
80053552289
-
Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease
-
Williams, A.R. & J.M. Hare 2011. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res. 109: 923-940.
-
(2011)
Circ. Res.
, vol.109
, pp. 923-940
-
-
Williams, A.R.1
Hare, J.M.2
-
59
-
-
62949195390
-
Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction
-
Zaruba, M.M. et al 2009. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4: 313-323.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 313-323
-
-
Zaruba, M.M.1
-
60
-
-
80052030185
-
Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development
-
Davis, R.P. et al 2011. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol. Med. 17: 475-484.
-
(2011)
Trends Mol. Med.
, vol.17
, pp. 475-484
-
-
Davis, R.P.1
-
61
-
-
79957807595
-
Immunogenicity of induced pluripotent stem cells
-
Zhao, T. et al 2011. Immunogenicity of induced pluripotent stem cells. Nature 474: 212-215.
-
(2011)
Nature
, vol.474
, pp. 212-215
-
-
Zhao, T.1
-
62
-
-
80053005674
-
Immunogenicity of induced pluripotent stem cells
-
Okita, K., N. Nagata & S. Yamanaka 2011. Immunogenicity of induced pluripotent stem cells. Circ. Res. 109: 720-721.
-
(2011)
Circ. Res.
, vol.109
, pp. 720-721
-
-
Okita, K.1
Nagata, N.2
Yamanaka, S.3
-
63
-
-
82355175128
-
NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
-
Elliott, D.A. et al 2011. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8: 1037-1040.
-
(2011)
Nat. Methods
, vol.8
, pp. 1037-1040
-
-
Elliott, D.A.1
-
64
-
-
80755142726
-
SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells
-
Dubois, N.C. et al 2011. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29: 1011-1018.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 1011-1018
-
-
Dubois, N.C.1
-
65
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
Ieda, M. et al 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375-386.
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
-
66
-
-
79952273710
-
Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy
-
Efe, J.A. et al 2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13: 215-222.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 215-222
-
-
Efe, J.A.1
-
67
-
-
79961032369
-
+-ATPase in patients with advanced heart failure
-
+-ATPase in patients with advanced heart failure. Circulation 124: 304-313.
-
(2011)
Circulation
, vol.124
, pp. 304-313
-
-
Jessup, M.1
-
68
-
-
80053349683
-
SUMO1-dependent modulation of SERCA2a in heart failure
-
Kho, C. et al 2011. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477: 601-605.
-
(2011)
Nature
, vol.477
, pp. 601-605
-
-
Kho, C.1
|