메뉴 건너뛰기




Volumn 1254, Issue 1, 2012, Pages 71-81

Heart repair: From natural mechanisms of cardiomyocyte production to the design of new cardiac therapies

Author keywords

Cardiac regenerative therapies; Cardiomyocyte generation; Heart development; Heart homeostasis; Heart injury

Indexed keywords

MICRORNA; MITOGEN ACTIVATED PROTEIN KINASE P38; NEU DIFFERENTIATION FACTOR; TRANSCRIPTION FACTOR RUNX2;

EID: 84860461058     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2012.06488.x     Document Type: Article
Times cited : (20)

References (68)
  • 1
    • 64249107059 scopus 로고    scopus 로고
    • Evidence for cardiomyocyte renewal in humans
    • Bergmann, O. et al 2009. Evidence for cardiomyocyte renewal in humans. Science 324: 98-102.
    • (2009) Science , vol.324 , pp. 98-102
    • Bergmann, O.1
  • 2
    • 34547699399 scopus 로고    scopus 로고
    • Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury
    • Hsieh, P.C. et al 2007. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13: 970-974.
    • (2007) Nat. Med. , vol.13 , pp. 970-974
    • Hsieh, P.C.1
  • 3
    • 79953903083 scopus 로고    scopus 로고
    • Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair
    • Loffredo, F.S. et al. 2011. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8: 389-398.
    • (2011) Cell Stem Cell , vol.8 , pp. 389-398
    • Loffredo, F.S.1
  • 4
    • 79959819263 scopus 로고    scopus 로고
    • De novo cardiomyocytes from within the activated adult heart after injury
    • Smart, N. et al 2011. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474: 640-644.
    • (2011) Nature , vol.474 , pp. 640-644
    • Smart, N.1
  • 5
    • 79956334658 scopus 로고    scopus 로고
    • Heart regeneration
    • Laflamme, M.A. & C.E. Murry 2011. Heart regeneration. Nature 473: 326-335.
    • (2011) Nature , vol.473 , pp. 326-335
    • Laflamme, M.A.1    Murry, C.E.2
  • 6
    • 82755170946 scopus 로고    scopus 로고
    • Adult cardiac-resident MSC-like stem cells with a proepicardial origin
    • Chong, J.J. et al 2011. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9: 527-540.
    • (2011) Cell Stem Cell , vol.9 , pp. 527-540
    • Chong, J.J.1
  • 7
    • 80053547300 scopus 로고    scopus 로고
    • Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology
    • Leri, A., J. Kajstura & P. Anversa 2011. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ. Res. 109: 941-961.
    • (2011) Circ. Res. , vol.109 , pp. 941-961
    • Leri, A.1    Kajstura, J.2    Anversa, P.3
  • 8
    • 77649217961 scopus 로고    scopus 로고
    • Second lineage of heart forming region provides new understanding of conotruncal heart defects
    • Nakajima, Y. 2010. Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit. Anom. (Kyoto) 50: 8-14.
    • (2010) Congenit. Anom. (Kyoto) , vol.50 , pp. 8-14
    • Nakajima, Y.1
  • 9
    • 33644680809 scopus 로고    scopus 로고
    • Building the mammalian heart from two sources of myocardial cells
    • Buckingham, M., S. Meilhac & S. Zaffran 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6: 826-835.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 826-835
    • Buckingham, M.1    Meilhac, S.2    Zaffran, S.3
  • 10
    • 77957265714 scopus 로고    scopus 로고
    • Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart
    • Aanhaanen, W.T. et al 2012. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ. Res. 107: 728-736.
    • (2012) Circ. Res. , vol.107 , pp. 728-736
    • Aanhaanen, W.T.1
  • 11
    • 78650743558 scopus 로고    scopus 로고
    • Early cardiac growth and the ballooning model of cardiac chamber formation
    • N. Rosenthal & R.P. Harvey, Eds.: Elsevier. New York
    • Moorman, A.F., G. van den Berg, R.H. Anderson, V.M. Christoffels 2010. Early cardiac growth and the ballooning model of cardiac chamber formation. In Heart Development and Regeneration, Vol. 1. N. Rosenthal & R.P. Harvey, Eds.: 219-233. Elsevier. New York
    • (2010) Heart Development and Regeneration , vol.1 , pp. 219-233
    • Moorman, A.F.1    van den Berg, G.2    Anderson, R.H.3    Christoffels, V.M.4
  • 12
    • 0346783332 scopus 로고    scopus 로고
    • Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
    • Cai, C.L. et al 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5: 877-889.
    • (2003) Dev. Cell , vol.5 , pp. 877-889
    • Cai, C.L.1
  • 13
    • 0035477641 scopus 로고    scopus 로고
    • The outflow tract of the heart is recruited from a novel heart-forming field
    • Mjaatvedt, C.H. et al 2001. The outflow tract of the heart is recruited from a novel heart-forming field. Dev. Biol. 238: 97-109.
    • (2001) Dev. Biol. , vol.238 , pp. 97-109
    • Mjaatvedt, C.H.1
  • 14
    • 0034839927 scopus 로고    scopus 로고
    • Conotruncal myocardium arises from a secondary heart field
    • Waldo, K.L. et al 2001. Conotruncal myocardium arises from a secondary heart field. Development 128: 3179-3188.
    • (2001) Development , vol.128 , pp. 3179-3188
    • Waldo, K.L.1
  • 15
    • 0035461911 scopus 로고    scopus 로고
    • The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm
    • Kelly, R.G., N.A. Brown & M.E. Buckingham 2001. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 1: 435-440.
    • (2001) Dev. Cell , vol.1 , pp. 435-440
    • Kelly, R.G.1    Brown, N.A.2    Buckingham, M.E.3
  • 16
    • 4043059202 scopus 로고    scopus 로고
    • Right ventricular myocardium derives from the anterior heart field
    • Zaffran, S. et al 2004. Right ventricular myocardium derives from the anterior heart field. Circ. Res. 95: 261-268.
    • (2004) Circ. Res. , vol.95 , pp. 261-268
    • Zaffran, S.1
  • 17
    • 2342518098 scopus 로고    scopus 로고
    • The clonal origin of myocardial cells in different regions of the embryonic mouse heart
    • Meilhac, S.M. et al 2004. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6: 685-698.
    • (2004) Dev. Cell , vol.6 , pp. 685-698
    • Meilhac, S.M.1
  • 18
    • 33845457194 scopus 로고    scopus 로고
    • + progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
    • + progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151-1165.
    • (2006) Cell , vol.127 , pp. 1151-1165
    • Moretti, A.1
  • 19
    • 33947165217 scopus 로고    scopus 로고
    • Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells
    • Sun, Y. et al 2007. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304: 286-296.
    • (2007) Dev. Biol. , vol.304 , pp. 286-296
    • Sun, Y.1
  • 20
    • 80053936438 scopus 로고    scopus 로고
    • The heart endocardium is derived from vascular endothelial progenitors
    • Milgrom-Hoffman, M. et al 2011. The heart endocardium is derived from vascular endothelial progenitors. Development 138: 4777-4787.
    • (2011) Development , vol.138 , pp. 4777-4787
    • Milgrom-Hoffman, M.1
  • 21
    • 34447116292 scopus 로고    scopus 로고
    • Cardiovascular development and the colonizing cardiac neural crest lineage
    • Snider, P. et al 2007. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 7: 1090-1113.
    • (2007) ScientificWorldJournal , vol.7 , pp. 1090-1113
    • Snider, P.1
  • 22
    • 84856115740 scopus 로고    scopus 로고
    • Signaling during epicardium and coronary vessel development
    • Perez-Pomares, J.M. & J.L. de la Pompa 2011. Signaling during epicardium and coronary vessel development. Circ. Res. 109: 1429-1442.
    • (2011) Circ. Res. , vol.109 , pp. 1429-1442
    • Perez-Pomares, J.M.1    de la Pompa, J.L.2
  • 23
    • 46449089721 scopus 로고    scopus 로고
    • A myocardial lineage derives from Tbx18 epicardial cells
    • Cai, C.L. et al 2008. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454: 104-108.
    • (2008) Nature , vol.454 , pp. 104-108
    • Cai, C.L.1
  • 24
    • 46449138664 scopus 로고    scopus 로고
    • Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
    • Zhou, B. et al 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454: 109-113.
    • (2008) Nature , vol.454 , pp. 109-113
    • Zhou, B.1
  • 25
    • 67349150416 scopus 로고    scopus 로고
    • Concepts of cardiac development in retrospect
    • van den Berg, G. & A.F. Moorman 2009. Concepts of cardiac development in retrospect. Pediatr. Cardiol. 30: 580-587.
    • (2009) Pediatr. Cardiol. , vol.30 , pp. 580-587
    • van den Berg, G.1    Moorman, A.F.2
  • 26
    • 33748357932 scopus 로고    scopus 로고
    • Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation
    • Soufan, A.T. et al 2006. Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ. Res. 99: 545-552.
    • (2006) Circ. Res. , vol.99 , pp. 545-552
    • Soufan, A.T.1
  • 27
    • 79953035509 scopus 로고    scopus 로고
    • Formation of the building plan of the human heart: morphogenesis, growth, and differentiation
    • Sizarov, A. et al 2011. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation 123: 1125-1135.
    • (2011) Circulation , vol.123 , pp. 1125-1135
    • Sizarov, A.1
  • 28
    • 78650720052 scopus 로고    scopus 로고
    • The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format
    • de Boer, B.A. et al 2011. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format. Development 138: 159-167.
    • (2011) Development , vol.138 , pp. 159-167
    • de Boer, B.A.1
  • 29
    • 0034798853 scopus 로고    scopus 로고
    • Characterisation of postnatal growth of the murine heart
    • Leu, M., E. Ehler & J.C. Perriard 2001. Characterisation of postnatal growth of the murine heart. Anat. Embryol. (Berl). 204: 217-224.
    • (2001) Anat. Embryol. (Berl). , vol.204 , pp. 217-224
    • Leu, M.1    Ehler, E.2    Perriard, J.C.3
  • 30
    • 54249167065 scopus 로고    scopus 로고
    • Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart?
    • Porrello, E.R., R.E. Widdop & L.M. Delbridge 2008. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart? Clin. Exp. Pharmacol. Physiol. 35: 1358-1364.
    • (2008) Clin. Exp. Pharmacol. Physiol. , vol.35 , pp. 1358-1364
    • Porrello, E.R.1    Widdop, R.E.2    Delbridge, L.M.3
  • 32
    • 38849197532 scopus 로고    scopus 로고
    • Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish
    • Wills, A.A. et al 2008. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135: 183-192.
    • (2008) Development , vol.135 , pp. 183-192
    • Wills, A.A.1
  • 33
    • 0037073890 scopus 로고    scopus 로고
    • Heart regeneration in zebrafish
    • Poss, K.D., L.G. Wilson & M.T. Keating 2002. Heart regeneration in zebrafish. Science 298: 2188-2190.
    • (2002) Science , vol.298 , pp. 2188-2190
    • Poss, K.D.1    Wilson, L.G.2    Keating, M.T.3
  • 34
    • 79952065525 scopus 로고    scopus 로고
    • Transient regenerative potential of the neonatal mouse heart
    • Porrello, E.R. et al 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078-1080.
    • (2011) Science , vol.331 , pp. 1078-1080
    • Porrello, E.R.1
  • 35
    • 79959427955 scopus 로고    scopus 로고
    • + epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
    • + epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 138: 2895-2902.
    • (2011) Development , vol.138 , pp. 2895-2902
    • Kikuchi, K.1
  • 36
    • 79952527330 scopus 로고    scopus 로고
    • Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
    • Kikuchi, K. et al 2011. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20: 397-404.
    • (2011) Dev. Cell , vol.20 , pp. 397-404
    • Kikuchi, K.1
  • 37
    • 33750483609 scopus 로고    scopus 로고
    • A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
    • Lepilina, A. et al 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127: 607-619.
    • (2006) Cell , vol.127 , pp. 607-619
    • Lepilina, A.1
  • 38
    • 79955364546 scopus 로고    scopus 로고
    • Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
    • Gonzalez-Rosa, J.M. et al 2011. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138: 1663-1674.
    • (2011) Development , vol.138 , pp. 1663-1674
    • Gonzalez-Rosa, J.M.1
  • 39
    • 77950200829 scopus 로고    scopus 로고
    • Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
    • Jopling, C. et al 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606-609.
    • (2010) Nature , vol.464 , pp. 606-609
    • Jopling, C.1
  • 40
    • 77950201708 scopus 로고    scopus 로고
    • Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
    • Kikuchi, K. et al 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601-605.
    • (2010) Nature , vol.464 , pp. 601-605
    • Kikuchi, K.1
  • 41
    • 79955498411 scopus 로고    scopus 로고
    • Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
    • Zhou, B. et al 2011. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121: 1894-1904.
    • (2011) J. Clin. Invest , vol.121 , pp. 1894-1904
    • Zhou, B.1
  • 42
    • 84055214880 scopus 로고    scopus 로고
    • Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes
    • Zhou, B. et al 2012. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell Cardiol. 52: 43-47.
    • (2012) J. Mol. Cell Cardiol. , vol.52 , pp. 43-47
    • Zhou, B.1
  • 43
    • 0035821988 scopus 로고    scopus 로고
    • Evidence that human cardiac myocytes divide after myocardial infarction
    • Beltrami, A.P. et al 2001. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344: 1750-1757.
    • (2001) N. Engl. J. Med. , vol.344 , pp. 1750-1757
    • Beltrami, A.P.1
  • 44
    • 53249133042 scopus 로고    scopus 로고
    • Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development
    • Drenckhahn, J.D. et al 2008. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev. Cell 15: 521-533.
    • (2008) Dev. Cell , vol.15 , pp. 521-533
    • Drenckhahn, J.D.1
  • 45
    • 0030219688 scopus 로고    scopus 로고
    • Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
    • Li, F. et al 1996. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28: 1737-1746.
    • (1996) J. Mol. Cell Cardiol. , vol.28 , pp. 1737-1746
    • Li, F.1
  • 46
    • 0030249340 scopus 로고    scopus 로고
    • Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart
    • Olivetti, G. et al 1996. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell Cardiol. 28: 2005-2016.
    • (1996) J. Mol. Cell Cardiol. , vol.28 , pp. 2005-2016
    • Olivetti, G.1
  • 47
    • 79951693039 scopus 로고    scopus 로고
    • Cardiac muscle regeneration: lessons from development
    • Mercola, M., P. Ruiz-Lozano & M.D. Schneider 2011. Cardiac muscle regeneration: lessons from development. Genes Dev. 25: 299-309.
    • (2011) Genes Dev. , vol.25 , pp. 299-309
    • Mercola, M.1    Ruiz-Lozano, P.2    Schneider, M.D.3
  • 48
    • 79959926623 scopus 로고    scopus 로고
    • Shedding new light on the mechanism underlying stem cell therapy for the heart
    • Mummery, C. & M.J. Goumans 2011. Shedding new light on the mechanism underlying stem cell therapy for the heart. Mol. Ther. 19: 1186-1188.
    • (2011) Mol. Ther. , vol.19 , pp. 1186-1188
    • Mummery, C.1    Goumans, M.J.2
  • 49
    • 41449094683 scopus 로고    scopus 로고
    • Lives of a heart cell: tracing the origins of cardiac progenitors
    • Martin-Puig, S., Z. Wang & K.R. Chien 2008. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2: 320-331.
    • (2008) Cell Stem Cell , vol.2 , pp. 320-331
    • Martin-Puig, S.1    Wang, Z.2    Chien, K.R.3
  • 50
    • 82255175382 scopus 로고    scopus 로고
    • Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial
    • Bolli, R. et al 2011. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847-1857.
    • (2011) Lancet , vol.378 , pp. 1847-1857
    • Bolli, R.1
  • 51
    • 0037205320 scopus 로고    scopus 로고
    • Cardiomyocyte cell cycle regulation
    • Pasumarthi, K.B. & L.J. Field 2002. Cardiomyocyte cell cycle regulation. Circ. Res. 90: 1044-1054.
    • (2002) Circ. Res. , vol.90 , pp. 1044-1054
    • Pasumarthi, K.B.1    Field, L.J.2
  • 52
    • 33750298315 scopus 로고    scopus 로고
    • FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction
    • Engel, F.B. et al 2006. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. USA. 103: 15546-15551.
    • (2006) Proc. Natl. Acad. Sci. USA. , vol.103 , pp. 15546-15551
    • Engel, F.B.1
  • 53
    • 34547691243 scopus 로고    scopus 로고
    • Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
    • Kuhn, B. et al 2007. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13: 962-969.
    • (2007) Nat. Med. , vol.13 , pp. 962-969
    • Kuhn, B.1
  • 54
    • 67650569135 scopus 로고    scopus 로고
    • Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
    • Bersell, K. et al 2009. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138: 257-270.
    • (2009) Cell , vol.138 , pp. 257-270
    • Bersell, K.1
  • 55
    • 55449100829 scopus 로고    scopus 로고
    • Toward microRNA-based therapeutics for heart disease: the sense in antisense
    • van Rooij, E., W.S. Marshall & E.N. Olson 2008. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103: 919-928.
    • (2008) Circ. Res. , vol.103 , pp. 919-928
    • van Rooij, E.1    Marshall, W.S.2    Olson, E.N.3
  • 56
    • 41149104867 scopus 로고    scopus 로고
    • Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction
    • Hassink, R.J. et al 2008. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78: 18-25.
    • (2008) Cardiovasc. Res. , vol.78 , pp. 18-25
    • Hassink, R.J.1
  • 57
    • 79955557870 scopus 로고    scopus 로고
    • Getting to the heart of myocardial stem cells and cell therapy
    • Rasmussen, T.L. et al 2011. Getting to the heart of myocardial stem cells and cell therapy. Circulation 123: 1771-1779.
    • (2011) Circulation , vol.123 , pp. 1771-1779
    • Rasmussen, T.L.1
  • 58
    • 80053552289 scopus 로고    scopus 로고
    • Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease
    • Williams, A.R. & J.M. Hare 2011. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res. 109: 923-940.
    • (2011) Circ. Res. , vol.109 , pp. 923-940
    • Williams, A.R.1    Hare, J.M.2
  • 59
    • 62949195390 scopus 로고    scopus 로고
    • Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction
    • Zaruba, M.M. et al 2009. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4: 313-323.
    • (2009) Cell Stem Cell , vol.4 , pp. 313-323
    • Zaruba, M.M.1
  • 60
    • 80052030185 scopus 로고    scopus 로고
    • Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development
    • Davis, R.P. et al 2011. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol. Med. 17: 475-484.
    • (2011) Trends Mol. Med. , vol.17 , pp. 475-484
    • Davis, R.P.1
  • 61
    • 79957807595 scopus 로고    scopus 로고
    • Immunogenicity of induced pluripotent stem cells
    • Zhao, T. et al 2011. Immunogenicity of induced pluripotent stem cells. Nature 474: 212-215.
    • (2011) Nature , vol.474 , pp. 212-215
    • Zhao, T.1
  • 62
    • 80053005674 scopus 로고    scopus 로고
    • Immunogenicity of induced pluripotent stem cells
    • Okita, K., N. Nagata & S. Yamanaka 2011. Immunogenicity of induced pluripotent stem cells. Circ. Res. 109: 720-721.
    • (2011) Circ. Res. , vol.109 , pp. 720-721
    • Okita, K.1    Nagata, N.2    Yamanaka, S.3
  • 63
    • 82355175128 scopus 로고    scopus 로고
    • NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
    • Elliott, D.A. et al 2011. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8: 1037-1040.
    • (2011) Nat. Methods , vol.8 , pp. 1037-1040
    • Elliott, D.A.1
  • 64
    • 80755142726 scopus 로고    scopus 로고
    • SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells
    • Dubois, N.C. et al 2011. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29: 1011-1018.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 1011-1018
    • Dubois, N.C.1
  • 65
    • 77955321344 scopus 로고    scopus 로고
    • Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
    • Ieda, M. et al 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375-386.
    • (2010) Cell , vol.142 , pp. 375-386
    • Ieda, M.1
  • 66
    • 79952273710 scopus 로고    scopus 로고
    • Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy
    • Efe, J.A. et al 2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13: 215-222.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 215-222
    • Efe, J.A.1
  • 67
    • 79961032369 scopus 로고    scopus 로고
    • +-ATPase in patients with advanced heart failure
    • +-ATPase in patients with advanced heart failure. Circulation 124: 304-313.
    • (2011) Circulation , vol.124 , pp. 304-313
    • Jessup, M.1
  • 68
    • 80053349683 scopus 로고    scopus 로고
    • SUMO1-dependent modulation of SERCA2a in heart failure
    • Kho, C. et al 2011. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477: 601-605.
    • (2011) Nature , vol.477 , pp. 601-605
    • Kho, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.