메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 917-929

Exact posterior distributions and model selection criteria for multiple change-point detection problems

Author keywords

Bayesian model selection; BIC; change point detection; DIC; ICL; posterior distribution of change points; posterior distribution of segments

Indexed keywords


EID: 84859754173     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9258-8     Document Type: Article
Times cited : (43)

References (29)
  • 1
    • 0000501656 scopus 로고
    • Information theory as an extension of the maximum likelihood principle
    • B. Petrov and F. Csaki (Eds.), Budapest: Akademiai Kiado
    • Akaike, H.: Information theory as an extension of the maximum likelihood principle. In: Petrov, B., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267-281. Akademiai Kiado, Budapest (1973).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0037286212 scopus 로고    scopus 로고
    • Computation and analysis of multiple structural change models
    • Bai, J., Perron, P.: Computation and analysis of multiple structural change models. J. Appl. Econ. 18, 1-22 (2003).
    • (2003) J. Appl. Econ. , vol.18 , pp. 1-22
    • Bai, J.1    Perron, P.2
  • 3
    • 65349098884 scopus 로고    scopus 로고
    • Gaussian model selection with unknown variance
    • Baraud, Y., Giraud, C., Huet, S.: Gaussian model selection with unknown variance. Ann. Stat. 37(2), 630-672 (2009).
    • (2009) Ann. Stat. , vol.37 , Issue.2 , pp. 630-672
    • Baraud, Y.1    Giraud, C.2    Huet, S.3
  • 4
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719-725 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 77954027738 scopus 로고    scopus 로고
    • Exact and Monte-Carlo calculation of integrated likelihoods for the latent class model
    • Biernacki, C., Celeux, G., Govaert, G.: Exact and Monte-Carlo calculation of integrated likelihoods for the latent class model. J. Stat. Plan. Inference 140, 2191-3002 (2010).
    • (2010) J. Stat. Plan. Inference , vol.140 , pp. 2191-3002
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 6
    • 33847613502 scopus 로고    scopus 로고
    • Minimal penalties for Gaussian model selection
    • Birgé, L., Massart, P.: Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields 138, 33-73 (2007).
    • (2007) Probab. Theory Relat. Fields , vol.138 , pp. 33-73
    • Birgé, L.1    Massart, P.2
  • 7
    • 0001652129 scopus 로고    scopus 로고
    • Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation
    • Braun, R.-K., Braun, J.-V., Müller, H.-G.: Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87, 301-314 (2000).
    • (2000) Biometrika , vol.87 , pp. 301-314
    • Braun, R.-K.1    Braun, J.-V.2    Müller, H.-G.3
  • 8
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo methods
    • ArticleType: research-article/Full publication date: 1995/Copyright © 1995 Royal Statistical Society
    • Carlin, B. P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc., Ser. B, Stat. Methodol. 57(3), 473-484 (1995). ArticleType: research-article/Full publication date: 1995/Copyright © 1995 Royal Statistical Society.
    • (1995) J. R. Stat. Soc., Ser. B, Stat. Methodol. , vol.57 , Issue.3 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 10
    • 24944555208 scopus 로고    scopus 로고
    • Bayesian model choice based on Monte Carlo estimates of posterior model probabilities
    • Congdon, P.: Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput. Stat. Data Anal. 50(2), 346-357 (2006).
    • (2006) Comput. Stat. Data Anal. , vol.50 , Issue.2 , pp. 346-357
    • Congdon, P.1
  • 11
    • 33947265275 scopus 로고    scopus 로고
    • Model weights for model choice and averaging
    • Congdon, P.: Model weights for model choice and averaging. Stat. Methodol. 4(2), 143-157 (2007).
    • (2007) Stat. Methodol. , vol.4 , Issue.2 , pp. 143-157
    • Congdon, P.1
  • 12
    • 0002128373 scopus 로고
    • The loglikelihood ratio in segmented regression
    • Feder, P. I.: The loglikelihood ratio in segmented regression. Ann. Stat. 3(1), 84-97 (1975).
    • (1975) Ann. Stat. , vol.3 , Issue.1 , pp. 84-97
    • Feder, P.I.1
  • 13
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • Godsill, S. J.: On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Stat. 10, 230-248 (2001).
    • (2001) J. Comput. Graph. Stat. , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 15
    • 54849442490 scopus 로고    scopus 로고
    • Bootstrapping confidence intervals for the change-point of time series
    • Husková, M., Kirch, C.: Bootstrapping confidence intervals for the change-point of time series. J. Time Ser. Anal. 29(6), 947-972 (2008).
    • (2008) J. Time Ser. Anal. , vol.29 , Issue.6 , pp. 947-972
    • Husková, M.1    Kirch, C.2
  • 17
    • 19844378139 scopus 로고    scopus 로고
    • Using penalized contrasts for the change-point problem
    • Lavielle, M.: Using penalized contrasts for the change-point problem. Signal Process. 85(8), 1501-1510 (2005).
    • (2005) Signal Process. , vol.85 , Issue.8 , pp. 1501-1510
    • Lavielle, M.1
  • 18
    • 13844315857 scopus 로고    scopus 로고
    • Detecting multiple change-points in the mean of Gaussian process by model selection
    • Lebarbier, E.: Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Process. 85, 717-736 (2005).
    • (2005) Signal Process. , vol.85 , pp. 717-736
    • Lebarbier, E.1
  • 19
    • 70349465349 scopus 로고    scopus 로고
    • Une introduction au critère BIC: Fondements théoriques et interprétation
    • Lebarbier, E., Mary-Huard, T.: Une introduction au critère BIC: fondements théoriques et interprétation. J. Soc. Fr. Stat. 147(1), 39-57 (2006).
    • (2006) J. Soc. Fr. Stat. , vol.147 , Issue.1 , pp. 39-57
    • Lebarbier, E.1    Mary-Huard, T.2
  • 20
    • 0011493112 scopus 로고
    • Estimating the number of change points in a sequence of independent normal random variables
    • Lee, C.-B.: Estimating the number of change points in a sequence of independent normal random variables. Stat. Probab. Lett. 25(3), 241-8 (1995).
    • (1995) Stat. Probab. Lett. , vol.25 , Issue.3 , pp. 241-248
    • Lee, C.-B.1
  • 21
    • 0141704311 scopus 로고    scopus 로고
    • Estimating regression models with unknown break-points
    • Muggeo, V. M.: Estimating regression models with unknown break-points. Stat. Med. 22(19), 3055-3071 (2003).
    • (2003) Stat. Med. , vol.22 , Issue.19 , pp. 3055-3071
    • Muggeo, V.M.1
  • 24
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 0036489069 scopus 로고    scopus 로고
    • Bayesian methods for hidden Markov models: Recursive computing in the 21st century
    • ArticleType: research-article/Full publication date: Mar., 2002/Copyright © 2002 American Statistical Association
    • Scott, S. L.: Bayesian methods for hidden Markov models: Recursive computing in the 21st century. J. Am. Stat. Assoc. 97(457), 337-351 (2002). ArticleType: research-article/Full publication date: Mar., 2002/Copyright © 2002 American Statistical Association.
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 337-351
    • Scott, S.L.1
  • 27
    • 0344585295 scopus 로고    scopus 로고
    • Piecewise regression: A tool for identifying ecological thresholds
    • Toms, J. D., Lesperance, M. L.: Piecewise regression: A tool for identifying ecological thresholds. Ecology 84(8), 2034-2041 (2003).
    • (2003) Ecology , vol.84 , Issue.8 , pp. 2034-2041
    • Toms, J.D.1    Lesperance, M.L.2
  • 28
    • 33847378251 scopus 로고
    • Estimating the number of change-points via Schwarz' criterion
    • Yao, Y.-C.: Estimating the number of change-points via Schwarz' criterion. Stat. Probab. Lett. 6(3), 181-189 (1988).
    • (1988) Stat. Probab. Lett. , vol.6 , Issue.3 , pp. 181-189
    • Yao, Y.-C.1
  • 29
    • 34247243220 scopus 로고    scopus 로고
    • A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data
    • Zhang, N. R., Siegmund, D. O.: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1), 22-32 (2007).
    • (2007) Biometrics , vol.63 , Issue.1 , pp. 22-32
    • Zhang, N.R.1    Siegmund, D.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.