메뉴 건너뛰기




Volumn 37, Issue 2, 2009, Pages 630-672

Gaussian model selection with an unknown variance

Author keywords

Adaptive estimation; AIC; AMDL; BIC; Change points detection; FPE; Model selection; Penalized criterion; Variable selection

Indexed keywords


EID: 65349098884     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-AOS573     Document Type: Article
Times cited : (46)

References (27)
  • 1
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • MR2281879
    • ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34 584-653. MR2281879
    • (2006) Ann. Statist , vol.34 , pp. 584-653
    • ABRAMOVICH, F.1    BENJAMINI, Y.2    DONOHO, D.3    JOHNSTONE, I.4
  • 2
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • MR0286233
    • AKAIKE, H. (1969). Statistical predictor identification. Ann. Inst. Statist. Math. 22 203-217. MR0286233
    • (1969) Ann. Inst. Statist. Math , vol.22 , pp. 203-217
    • AKAIKE, H.1
  • 3
    • 84868916161 scopus 로고    scopus 로고
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principal. In 2nd International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principal. In 2nd International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
  • 4
    • 51649158663 scopus 로고
    • A Bayesian analysis of the minimum AIC procedure
    • MR0507075
    • AKAIKE, H. (1978). A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Statist. Math. Part A 30 9-14. MR0507075
    • (1978) Ann. Inst. Statist. Math. Part A , vol.30 , pp. 9-14
    • AKAIKE, H.1
  • 5
    • 21144438312 scopus 로고    scopus 로고
    • Adaptive tests of linear hypotheses by model selection
    • MR1962505
    • BARAUD, Y., HUET, S. and LAURENT, B. (2003). Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 225-251. MR1962505
    • (2003) Ann. Statist , vol.31 , pp. 225-251
    • BARAUD, Y.1    HUET, S.2    LAURENT, B.3
  • 6
    • 65349148671 scopus 로고    scopus 로고
    • Gaussian model selection with unknown variance
    • Technical report. Available at arXiv:math/0701250
    • BARAUD, Y., GIRAUD, C. and HUET, S. (2007). Gaussian model selection with unknown variance. Technical report. Available at arXiv:math/0701250.
    • (2007)
    • BARAUD, Y.1    GIRAUD, C.2    HUET, S.3
  • 7
    • 65349103175 scopus 로고    scopus 로고
    • BARRON, A. R. (1991). Complexity regularization with applications to artificial neural networks. In Nonparametric Functional Estimation (Roussas G., ed.) 561-576. Kluwer, Dordrecht. MR1154352
    • BARRON, A. R. (1991). Complexity regularization with applications to artificial neural networks. In Nonparametric Functional Estimation (Roussas G., ed.) 561-576. Kluwer, Dordrecht. MR1154352
  • 8
    • 0033459856 scopus 로고    scopus 로고
    • Risk bounds for model selection via penalization
    • MR1679028
    • BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. MR1679028
    • (1999) Probab. Theory Related Fields , vol.113 , pp. 301-413
    • BARRON, A.1    BIRGÉ, L.2    MASSART, P.3
  • 10
    • 84868917237 scopus 로고    scopus 로고
    • BIRGÉ, L. and MASSART, P. (1997). From model selection to adaptive estimation. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (Pollard, D., Torgersen, E. and Yang, G. eds.) 55-87. Springer, New York. MR1462939
    • BIRGÉ, L. and MASSART, P. (1997). From model selection to adaptive estimation. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (Pollard, D., Torgersen, E. and Yang, G. eds.) 55-87. Springer, New York. MR1462939
  • 11
    • 0003281721 scopus 로고    scopus 로고
    • Gaussian model selection
    • MR1848946
    • BIRGÉ, L. and MASSART, P. (2001a). Gaussian model selection. J. Eur. Math. Soc. 3 203-268. MR1848946
    • (2001) J. Eur. Math. Soc , vol.3 , pp. 203-268
    • BIRGÉ, L.1    MASSART, P.2
  • 12
    • 33847613502 scopus 로고    scopus 로고
    • Minimal penalties for Gaussian model selection
    • MR2288064
    • BIRGÉ, L. and MASSART, P. (2007). Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138 33-73. MR2288064
    • (2007) Probab. Theory Related Fields , vol.138 , pp. 33-73
    • BIRGÉ, L.1    MASSART, P.2
  • 13
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDÈS, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist , vol.35 , pp. 2313-2351
    • CANDÈS, E.1    TAO, T.2
  • 14
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • MR1311089
    • DONOHO, D. and JOHNSTONE, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. MR1311089
    • (1994) Biometrika , vol.81 , pp. 425-455
    • DONOHO, D.1    JOHNSTONE, I.2
  • 16
    • 33846037388 scopus 로고    scopus 로고
    • Model selection for estimating the nonzero components of a Gaussian vector
    • MR2218407
    • HUET, S. (2006). Model selection for estimating the nonzero components of a Gaussian vector. ESAIM Probab. Statist. 10 164-183. MR2218407
    • (2006) ESAIM Probab. Statist , vol.10 , pp. 164-183
    • HUET, S.1
  • 18
    • 0034287154 scopus 로고    scopus 로고
    • Adaptive estimation of a quadratic functional by model selection
    • MR1805785
    • LAURENT, B. and MASSART, P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 1302-1338. MR1805785
    • (2000) Ann. Statist , vol.28 , pp. 1302-1338
    • LAURENT, B.1    MASSART, P.2
  • 19
    • 13844315857 scopus 로고    scopus 로고
    • Detecting multiple change-points in the mean of Gaussian process by model selection
    • LEBARBIER, E. (2005). Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Processing 85 717-736.
    • (2005) Signal Processing , vol.85 , pp. 717-736
    • LEBARBIER, E.1
  • 20
    • 84915425007 scopus 로고
    • Some comments on Cp
    • MALLOWS, C. L. (1973). Some comments on Cp. Technometrics 15 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • MALLOWS, C.L.1
  • 21
    • 65349162348 scopus 로고    scopus 로고
    • MCQUARRIE, A. D. R. and TSAI, C. L. (1998). Regression and Times Series Model Selection. World Scientific Publishing, River Edge, NJ. MR1641582
    • MCQUARRIE, A. D. R. and TSAI, C. L. (1998). Regression and Times Series Model Selection. World Scientific Publishing, River Edge, NJ. MR1641582
  • 22
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by description minimum length
    • MR0696056
    • RISSANEN, J. (1983). A universal prior for integers and estimation by description minimum length. Ann. Statist. 11 416-431. MR0696056
    • (1983) Ann. Statist , vol.11 , pp. 416-431
    • RISSANEN, J.1
  • 23
    • 0021466584 scopus 로고
    • Universal coding, information, prediction and estimation
    • MR0755791
    • RISSANEN, J. (1984). Universal coding, information, prediction and estimation. IEEE Trans. Inform. Theory 30 629-636. MR0755791
    • (1984) IEEE Trans. Inform. Theory , vol.30 , pp. 629-636
    • RISSANEN, J.1
  • 24
    • 85011629828 scopus 로고    scopus 로고
    • SAITO, N. (1994). Simultaneous noise suppression and signal compression using a library of orthogonal bases and the minimum description length criterion. In Wavelets in Geophysics (E. Foufoula-Georgiou and P. Kumar, eds.) 299-324. Academic Press, San Diego, CA. MR1295685
    • SAITO, N. (1994). Simultaneous noise suppression and signal compression using a library of orthogonal bases and the minimum description length criterion. In Wavelets in Geophysics (E. Foufoula-Georgiou and P. Kumar, eds.) 299-324. Academic Press, San Diego, CA. MR1295685
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • MR0468014
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • SCHWARZ, G.1
  • 26
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 27
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • ZOU, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.