메뉴 건너뛰기




Volumn , Issue , 2007, Pages 77-82

A comparative study of methods for transductive transfer learning

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; DATA MINING; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; MINING; SEARCH ENGINES;

EID: 49549110461     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2007.109     Document Type: Conference Paper
Times cited : (249)

References (20)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. In JMLR 6, pages 1817 - 1853, 2005.
    • (2005) JMLR , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71, 1996.
    • (1996) Computational Linguistics , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Pietra, S.D.2    Pietra, V.J.D.3
  • 3
    • 49549124001 scopus 로고    scopus 로고
    • R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong. Comparative experiments on learning information extractors for proteins and their interactions. In Journal of AI in Medicine, 2004. Data from ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/proteins.tar.gz.
    • R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong. Comparative experiments on learning information extractors for proteins and their interactions. In Journal of AI in Medicine, 2004. Data from ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/proteins.tar.gz.
  • 4
    • 84890506043 scopus 로고    scopus 로고
    • Adaptation of maximum entropy capitalizer: Little data can help a lot
    • D. Lin and D. Wu, editors, ACL
    • C. Chelba and A. Acero. Adaptation of maximum entropy capitalizer: Little data can help a lot. In D. Lin and D. Wu, editors, EMNLP 2004, pages 285-292. ACL, 2004.
    • (2004) EMNLP 2004 , pp. 285-292
    • Chelba, C.1    Acero, A.2
  • 5
    • 49549085463 scopus 로고    scopus 로고
    • W. W. Cohen. Minorthird: Methods for identifying names and ontological relations in text using heuristics for inducing regularities from data. http://minorthird.sourceforge.net, 2004.
    • W. W. Cohen. Minorthird: Methods for identifying names and ontological relations in text using heuristics for inducing regularities from data. http://minorthird.sourceforge.net, 2004.
  • 6
    • 84860513476 scopus 로고    scopus 로고
    • H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
    • H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
  • 11
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML 16, 1999.
    • (1999) ICML 16
    • Joachims, T.1
  • 13
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.
    • (2003) ICML
    • Joachims, T.1
  • 15
    • 25444514478 scopus 로고    scopus 로고
    • Building a protein name dictionary from full text: A machine learning term extraction approach
    • L. Shi and F. Campagne. Building a protein name dictionary from full text: a machine learning term extraction approach. In BMC Bioinformatics 6:88, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 88
    • Shi, L.1    Campagne, F.2
  • 16
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • ACM
    • V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised learning. In ICML, pages 824-831. ACM, 2005.
    • (2005) ICML , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 17
    • 80053277243 scopus 로고    scopus 로고
    • Composition of conditional random fields for transfer learning
    • C. Sutton and A. McCallum. Composition of conditional random fields for transfer learning. In HLT/EMLNLP, 2005.
    • (2005) HLT/EMLNLP
    • Sutton, C.1    McCallum, A.2
  • 19
    • 49549120582 scopus 로고    scopus 로고
    • Learning to extract gene-protein names from weakly-labeled text in preparation
    • In preparation
    • R. C. Wang, A. Tomasic, R. E. Frederking, and W. W. Cohen. Learning to extract gene-protein names from weakly-labeled text in preparation. In preparation, 2006.
    • (2006)
    • Wang, R.C.1    Tomasic, A.2    Frederking, R.E.3    Cohen, W.W.4
  • 20
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530. University of Wisconsin
    • X. Zhu. Semi-supervised learning literature survey. In Technical Report 1530. University of Wisconsin, 2005.
    • (2005)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.