메뉴 건너뛰기




Volumn 47, Issue 5, 2012, Pages 744-754

A fuzzy neural network model for monitoring A 2/O process using on-line monitoring parameters

Author keywords

Adaptive network based fuzzy inference system (ANFIS); anaerobic anoxic oxic (A 2 O) process; artificial neural network (ANN); genetic algorithm (GA); wastewater treatment

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; AEROBIC REACTOR; AMMONIA NITROGEN; ANAEROBIC/ANOXIC/ OXIC (A 2/O) PROCESS; ARTIFICIAL NEURAL NETWORK (ANN); ARTIFICIAL NEURAL NETWORK MODELS; CORRELATION COEFFICIENT; FUZZY C-MEANS CLUSTERING ALGORITHMS; FUZZY NEURAL NETWORK MODEL; GENETIC ALGORITHM (GA); HYDRAULIC RETENTION TIME; INPUT VARIABLES; MEAN ABSOLUTE PERCENTAGE ERROR; ONLINE MONITORING; PROCESS PERFORMANCE; REAL-CODE GENETIC ALGORITHMS; RETURN RATIO; ROOT MEAN SQUARE ERRORS; WEIGHT VECTOR;

EID: 84859167428     PISSN: 10934529     EISSN: 15324117     Source Type: Journal    
DOI: 10.1080/10934529.2012.660102     Document Type: Article
Times cited : (9)

References (29)
  • 1
    • 71249139784 scopus 로고    scopus 로고
    • Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater
    • Fan, J.; Tao, T.; Zhang, J.; You, G.L. Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater. Desalination 2009, 249(2), 822-827.
    • (2009) Desalination , vol.249 , Issue.2 , pp. 822-827
    • Fan, J.1    Tao, T.2    Zhang, J.3    You, G.L.4
  • 2
    • 79953030644 scopus 로고    scopus 로고
    • Methane emissions from a full-scale A/A/O wastewater treatment plant
    • Wang, J.; Zhang, J.; Xie, H.; Qi, P.; Ren, Y.; Hu, Z. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresour. Technol. 2010, 102(9), 5479-5485.
    • (2010) Bioresour. Technol. , vol.102 , Issue.9 , pp. 5479-5485
    • Wang, J.1    Zhang, J.2    Xie, H.3    Qi, P.4    Ren, Y.5    Hu, Z.6
  • 3
    • 47849094032 scopus 로고    scopus 로고
    • Modeling of the activated sludge process by using artificial neural networks with automated architecture screening
    • Moral, H.; Aksoy, A.; Gokcay, C.F. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput. Chem. Eng. 2008, 32(10), 2471-2478.
    • (2008) Comput. Chem. Eng. , vol.32 , Issue.10 , pp. 2471-2478
    • Moral, H.1    Aksoy, A.2    Gokcay, C.F.3
  • 4
    • 74749103360 scopus 로고    scopus 로고
    • Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN)
    • Guclu, D.; Dursun, S. Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN). Clean-Soil Air Water 2008, 36(9), 781-787.
    • (2008) Clean-Soil Air Water , vol.36 , Issue.9 , pp. 781-787
    • Guclu, D.1    Dursun, S.2
  • 5
    • 65549083334 scopus 로고    scopus 로고
    • Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm
    • Fang, F.; Ni, B.J.; Yu, H.Q. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. Water Res. 2009, 43(10), 2595-2604.
    • (2009) Water Res. , vol.43 , Issue.10 , pp. 2595-2604
    • Fang, F.1    Ni, B.J.2    Yu, H.Q.3
  • 6
    • 37349041384 scopus 로고    scopus 로고
    • Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network
    • Torrecilla, J.S.; Mena, M.L.; Ýãnez-Sedẽno, P.; Garćia, J. Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network. Biochem. Eng. J. 2008, 38(2), 171-179.
    • (2008) Biochem. Eng. J. , vol.38 , Issue.2 , pp. 171-179
    • Torrecilla, J.S.1    Mena, M.L.2    Ýãnez-Sedẽno, P.3    Garćia, J.4
  • 7
    • 0036179359 scopus 로고    scopus 로고
    • A neural network model to predict the wastewater inflow incorporating rainfall events
    • El-Din, A.G.; Smith, D.W. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Res. 2002, 36(5), 1115-1126.
    • (2002) Water Res. , vol.36 , Issue.5 , pp. 1115-1126
    • El-Din, A.G.1    Smith, D.W.2
  • 8
    • 0041509130 scopus 로고    scopus 로고
    • Assessing wastewater reclamation potential by neural network model
    • Chen, J.C.; Chang, N.B.; Shieh, W.K. Assessing wastewater reclamation potential by neural network model. Eng. Appl. Artif. Intel. 2003, 16(2), 149-157.
    • (2003) Eng. Appl. Artif. Intel. , vol.16 , Issue.2 , pp. 149-157
    • Chen, J.C.1    Chang, N.B.2    Shieh, W.K.3
  • 9
    • 0348167651 scopus 로고    scopus 로고
    • Astudy on the sedimentation model and neural network online adaptive control of a benzoic acid imitated wastewater oxidation process
    • Syu,M.; Chen, B.J.; Chou, S.T.Astudy on the sedimentation model and neural network online adaptive control of a benzoic acid imitated wastewater oxidation process. Ind. Eng. Chem. Res. 2003, 42(26), 6862-6871.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , Issue.26 , pp. 6862-6871
    • Syu, M.1    Chen, B.J.2    Chou, S.T.3
  • 10
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Modell. Softw. 2004, 19(10), 919-928.
    • (2004) Environ. Modell. Softw. , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 11
    • 13844296578 scopus 로고    scopus 로고
    • Adaptive recurrent neural network control of biological wastewater treatment
    • Baruch, I.S.; Georgieva, P.; Barrera-Cortes, J.; Azevedo, S.F. Adaptive recurrent neural network control of biological wastewater treatment. Int. J. Intell. Syst. 2005, 20(2), 173-193.
    • (2005) Int. J. Intell. Syst. , vol.20 , Issue.2 , pp. 173-193
    • Baruch, I.S.1    Georgieva, P.2    Barrera-Cortes, J.3    Azevedo, S.F.4
  • 12
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • Lee, D.S.; Jeon, C.O.; Park, J.M.; Chang, K.S. Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnol. Bioeng. 2002, 78(6), 670-682.
    • (2002) Biotechnol. Bioeng. , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 13
    • 79951857690 scopus 로고    scopus 로고
    • Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system
    • Wan, J.; Huang,M.; Ma, Y.; Guo,W.;Wang, Y.; Zhang, H.; Li,W.; Sun, X. Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Appl. Soft Comput. 2011, 11(3), 3238-3246.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.3 , pp. 3238-3246
    • Wan, J.1    Huang, M.2    Ma, Y.3    Guo, W.4    Wang, Y.5    Zhang, H.6    Li, W.7    Sun, X.8
  • 14
    • 33645130069 scopus 로고    scopus 로고
    • Ahybrid neural-genetic algorithm for reservoir water quality management
    • Kuo, J.T.;Wang,Y.Y.;Lung,W.S.Ahybrid neural-genetic algorithm for reservoir water quality management. Water Res. 2006, 40(7), 1367-1376.
    • (2006) Water Res. , vol.40 , Issue.7 , pp. 1367-1376
    • Kuo, J.T.1    Wang, Y.Y.2    Lung, W.S.3
  • 15
    • 0037368538 scopus 로고    scopus 로고
    • Evolutionary self-organising modelling of a municipal wastewater treatment plant
    • Hong, Y.S.; Bhamidimarri, R. Evolutionary self-organising modelling of a municipal wastewater treatment plant. Water Res. 2003, 37(6), 1199-1212.
    • (2003) Water Res. , vol.37 , Issue.6 , pp. 1199-1212
    • Hong, Y.S.1    Bhamidimarri, R.2
  • 16
    • 79953064822 scopus 로고    scopus 로고
    • Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor
    • Mullai, P.; Arulselvi, S.; Ngo, H.H.; Sabarathinam, P.L. Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor. Bioresource Technol. 2011, 102(9), 5492-5497.
    • (2011) Bioresource Technol. , vol.102 , Issue.9 , pp. 5492-5497
    • Mullai, P.1    Arulselvi, S.2    Ngo, H.H.3    Sabarathinam, P.L.4
  • 17
    • 79955484718 scopus 로고    scopus 로고
    • RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach
    • Bhatti,M.S.; Kapoor, D.; Kalia, R.K.; Reddy, A.S.; Thukral, A.K. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach. Desalination 2011, 274(1-3), 74-80.
    • (2011) Desalination , vol.274 , Issue.1-3 , pp. 74-80
    • Bhatti, M.S.1    Kapoor, D.2    Kalia, R.K.3    Reddy, A.S.4    Thukral, A.K.5
  • 18
    • 67649158681 scopus 로고    scopus 로고
    • Simulation of biodegradation process in a fluidized bed bioreactor using genetic algorithm trained feedforward neural network
    • Vinod, A.V.; Kumar, K.A.; Reddy, G.V. Simulation of biodegradation process in a fluidized bed bioreactor using genetic algorithm trained feedforward neural network. Biochem. Eng. J. 2009, 46(1), 12-20.
    • (2009) Biochem. Eng. J. , vol.46 , Issue.1 , pp. 12-20
    • Vinod, A.V.1    Kumar, K.A.2    Reddy, G.V.3
  • 19
    • 34447509444 scopus 로고    scopus 로고
    • Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent
    • Pai, T.Y.; Tsai, Y.P.; Lo, H.M.; Tsai, C.H.; Lin, C.Y. Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Comput. Chem. Eng. 2007, 31(10), 1272-1281.
    • (2007) Comput. Chem. Eng. , vol.31 , Issue.10 , pp. 1272-1281
    • Pai, T.Y.1    Tsai, Y.P.2    Lo, H.M.3    Tsai, C.H.4    Lin, C.Y.5
  • 20
    • 78649944143 scopus 로고    scopus 로고
    • Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production
    • Waewsak, C.; Nopharatana, A.; Chaiprasert, P. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production. J. Environ. Sci. 2010, 22(12), 1883-1890.
    • (2010) J. Environ. Sci. , vol.22 , Issue.12 , pp. 1883-1890
    • Waewsak, C.1    Nopharatana, A.2    Chaiprasert, P.3
  • 21
    • 69249219254 scopus 로고    scopus 로고
    • Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach
    • Pai, T.Y.; Wang, S.C.; Chiang, C.F.; Su, H.C.; Yu, L.F.; Sung, P.J.; Lin, C.Y.; Hu, H.C. Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach. Bioproc. Biosyst. Eng. 2009, 32(6), 781-790.
    • (2009) Bioproc. Biosyst. Eng. , vol.32 , Issue.6 , pp. 781-790
    • Pai, T.Y.1    Wang, S.C.2    Chiang, C.F.3    Su, H.C.4    Yu, L.F.5    Sung, P.J.6    Lin, C.Y.7    Hu, H.C.8
  • 22
    • 34547644268 scopus 로고    scopus 로고
    • Evaluation of input variables in adaptive-network-based fuzzy inference system modeling for an anaerobic wastewater treatment plant under unsteady state
    • Perendeci, A.; Arslan, S.; Tanyolac, A.; Celebi, S.S. Evaluation of input variables in adaptive-network-based fuzzy inference system modeling for an anaerobic wastewater treatment plant under unsteady state. J. Environ. Eng.-Asce 2007, 133(7), 765-771.
    • (2007) J. Environ. Eng.-Asce , vol.133 , Issue.7 , pp. 765-771
    • Perendeci, A.1    Arslan, S.2    Tanyolac, A.3    Celebi, S.S.4
  • 24
    • 0141831911 scopus 로고    scopus 로고
    • Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants
    • Yoo, C.K.; Vanrolleghem, P.A.; Lee, I.B. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants. J. Biotechnol. 2003, 105(1-2), 135-163.
    • (2003) J. Biotechnol. , vol.105 , Issue.1-2 , pp. 135-163
    • Yoo, C.K.1    Vanrolleghem, P.A.2    Lee, I.B.3
  • 25
    • 34548359352 scopus 로고    scopus 로고
    • Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and metaheuristic harmony search algorithm
    • Ayvaz, M.T. Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and metaheuristic harmony search algorithm. Adv. Water Resour. 2007, 30(11), 2326-2338.
    • (2007) Adv. Water Resour. , vol.30 , Issue.11 , pp. 2326-2338
    • Ayvaz, M.T.1
  • 26
    • 67349175728 scopus 로고    scopus 로고
    • Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks
    • Huang, M.Z.; Wan, J.Q.; Ma, Y.W.; Wang, Y.; Li, W.J.; Sun, X.F. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks. Expert Syst. Appl. 2009, 36(7), 10428-10437.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10428-10437
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Wang, Y.4    Li, W.J.5    Sun, X.F.6
  • 27
    • 77958175011 scopus 로고    scopus 로고
    • A fast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process
    • Huang, M.Z.; Wan, J.Q.; Ma, Y.W.; Li, W.J.; Sun, X.F.; Wan, Y. A fast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process. Bioresource Technol. 2010, 101(6), 1642-1651.
    • (2010) Bioresource Technol. , vol.101 , Issue.6 , pp. 1642-1651
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Li, W.J.4    Sun, X.F.5    Wan, Y.6
  • 29
    • 73349095716 scopus 로고    scopus 로고
    • Monitoring of Anoxic/oxic process for nitrogen and chemical oxygen demand removal using fuzzy neural networks
    • Huang, M.Z.; Wan, J.Q.; Ma, Y.W. Monitoring of Anoxic/oxic process for nitrogen and chemical oxygen demand removal using fuzzy neural networks. Water Environ. Res. 2009, 81(7), 654-663.
    • (2009) Water Environ. Res. , vol.81 , Issue.7 , pp. 654-663
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.